Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 48 (1992), S. 973-975 
    ISSN: 1420-9071
    Keywords: Uterine NK cells ; murine pregnancy ; colony-stimulating factor-1 (CSF-1) ; NK cell differentiation ; osteopetrosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract A population of uterine natural killer (NK) cells, commonly called granulated metrial gland (GMG) cells, differentiates in the mouse uterus during normal pregnancy. Little is known regarding the process of differentiation of GMG cells or of other NK cell subsets. It has been suggested that macrophage precursors, under the combined influences of the cytokine growth factors colony stimulating factor-1 (CSF-1) and interleukin-2, become NK-cell like in morphology, pattern of target cell lysis and surface antigen phenotype. Mice expressing the mutation osteopetrosis (op/op) are unable to produce the cytokine CSF-1. To determine whether CSF-1 is required for the successful differentiation of uterine NK cells, implantation sites in pregnant,op/op mice were studied histologically. GMG cell differentiation appeared to progress normally inop/op mice studied between days 7 and 14 of gestation. Thus, the growth factor CSF-1 is not required for differentiation of the uterine NK cell subset known as GMG cells and probably GMG cells do not differentiate from macrophage precursor cells which are deficient inop/op mice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 98 (1979), S. 571-585 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The genetic approach to the problem of cellular growth control is limited by the availability of recessive mutations in cell lines which are capable of growth control in vitro. The CHO cell line has yielded many recessive mutations including, for example, tsH1, a temperature sensitive leucyl-tRNA synthetase mutant, which under non-permissive conditions rapidly shuts down protein synthesis and generates uncharged tRNA. Both CHO and tsH1 are transformed, however, and do not respond to environmental stimuli with the coordinated regulation of macromolecular processes observed in normal diploid fibroblasts. We describe here the isolation and characterization of growth control revertants obtained from both CHOwt and tsH1. The best of these GRC+L-73, isolated from tsH1, had 20 chromosomes, one less than tsH1, had normal fibroblastic morphology, would not grow in suspension, required high serum concentrations for growth, grew to relatively low cell densities at saturation in monolayer culture and showed a stationary phase characterized by arrest in a G1-like state with maintenace of high viability for several weeks. It is expected that this line as well as a ts revertant GRC+LR-73 will greatly facilitate the genetic investigation of growth control and, in particular, will help to elucidate the role of uncharged tRNA in the regulation of macromolecular synthesis in mammalian cells.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 100 (1979), S. 127-138 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Previous studies on the synthesis and function of the protein synthetic machinery through the growth cycle of normal cultured hamster embryo fibroblasts (HA) were extended here to a series of four different clonal lines of polyoma virus-transformed HA cells. Under our culture conditions, these transformed cells could enter a stationary phase characterized by no mitotic cells, very low rates of DNA synthesis, and arrest in post-mitotic pre-DNA synthetic state. Cellular viability was initially high in stationary phase but, unlike normal cells, transformed cells slowly lost viability.The rate of protein synthesis in the stationary phase of the transformed cells fell to 25-30% of the exponential rate. Though this reduction was similar to that seen in normal cells, it was accomplished by different means. The specific reduction in the ribosome complement per cell to values below that of any cycling cell seen in normal cells, was not seen in any of the transformed lines. This observation, which implies a loss of normal control of ribosome synthesis through the growth cycle after transformation, was confirmed in normal Chinese hamster embryo fibroblasts and transformed CHO cell lines. Normal control of ribosome synthesis was restored in L-73 and LR-73, growth control revertants of one of the transformed CHO lines. The transformed lines reduced their protein synthetic rates in stationary phase either by a greater reduction in the proportion of functioning ribosomes than that seen in normal cells or by a decrease in the elongation rate of functioning ribosomes; the latter effect was not seen in the normal cells.A model for growth control of normal cells and its derangement in transformed cells is presented.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Cellular Physiology 105 (1980), S. 313-325 
    ISSN: 0021-9541
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A key attribute of the stringent response of bacteria is the rapid inhibition of ribosomal RNA synthesis mediated by unusual nucleotides in response to uncharged tRNA. The question as to whether mammalian cells show a stringent response analogous to that of bacteria was critically tested by the effective rapid amino acid starvation of both normal and transformed cells. Rapid starvation giving a high proportion of uncharged tRNA for leucine was produced within 7 minutes of expression of a nonleaky ts leucyl tRNA synthetase mutation in transformed CHO cells (tsH1) and in its normal growth control revertant (L-73). To control for the effect of temperature alone, tsrevertants of tsH1 and L-73 were included in the study, and to control for effects due simply to the inhibition of protein synthesis, the translational elongation inhibitor cycloheximide was used. In addition, rapid starvation for histidine was effected by incubation of both the CHO cell lines and of freshly explanted normal Chinese hamster embryo fibroblasts in histidine-free medium containing high concentrations of histidinol.The rate of preribosomal RNA synthesis and the extent of its maturation to mature rRNA was measured using (3H-methyl) methionine as a donor of methyl groups during synthesis and methylation of pre-rRNA. There was no effect on pre-rRNA synthesis of the rapid generation of uncharged tRNA for 45 minutes for any of the cell types tested. A nonspecific inhibition of maturation of 18S rRNA and late (3 hour) inhibition of pre-rRNA synthesis was observed, but could be mimicked by the inhibition of protein synthesis to comparable levels with cycloheximide. Less severe amino acid starvation resulting in a more physiological inhibition of protein synthesis to 30% also had no specific effect on pre-rRNA synthesis and maturation.Intracellular nucleotide pools were also examined for the appearance of unusual nucleotides such as guanosine tetraphosphate or pentaphosphate and for changes in the levels of normal nucleotides after severe amino acid starvation. No such changes could be detected.We conclude that although mammalian cells may have some biochemical reactions which respond to uncharged tRNA, they do not possess a macromolecular control system analogous to the stringent response of bacteria.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...