Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4919
    Keywords: laminin receptors ; proteoglycan ; cell adhesion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Working with Mel-85 (a human melanoma cell line), we have been able to detect a laminin-binding molecule with an apparent molecular mass of 100/110 kDa (Mel-85-LBM). Reduction with β-mercaptoethanol decreases its molecular mass but does not affect its ability to bind laminin. This laminin interaction seems to be very specific since Mel-85-LBM binds laminin, but not fibronectin, vitronectin or type I collagen in affinity chromatography experiments. The molecule has a negative net charge at physiological pH and binds laminin in a divalent cation dependent way. Mel-85-LBM was metabolically radiolabeled with sodium [35S]-sulfate and chemical β-elimination of purified Mel-85-LBM releases chondroitin sulfate chains. Mel-85-LBM is also sensitive to chondroitinase ABC digestion. These findings show that this molecule is a chondroitin sulfate proteoglycan. The location of this proteoglycan at the cell surface is evidenced by experiments using a polyclonal antiserum raised against purified Mel-85LBM, that specifically reacts with just one molecule by western blotting among Mel-85 total cell extract as well as produces a positive signal by flow cytometry and a fluorescence profile of Mel-85 cells adhered on laminin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-6865
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Loxoscelism or necrotic arachnidism are terms used to describe lesions and reactions induced by bites (envenomation) from spiders of the genus Loxosceles. Envenomation has been reported to provoke dermonecrosis and haemorrhage at the bite site and haemolysis, disseminated intravascular coagulation and renal failure. The purpose of this work was to study the effect of the venom of the brown spider Loxosceles intermedia on basement membrane structures and on its major constituent molecules. Light microscopy observations showed that L. intermedia venom obtained through electric shock, which reproduces two major signals of Loxoscelism in the laboratory, exhibits activity toward basement membrane structures in mouse Engelbreth-Holm-Swarm (EHS) sarcoma. Basement degradation was seen by a reduced periodic acid-Schiff (PAS) and alcian blue staining as well as by a reduced immunostaining for laminin when compared to control experiments. Electron microscopy studies confirmed the above results, showing the action of the venom on EHS-basement membranes and demonstrating that these tissue structures are susceptible to the venom. Using purified components of the basement membrane, we determined through SDS-PAGE and agarose gel that the venom is not active toward laminin or type IV collagen, but is capable of cleaving entactin and endothelial heparan sulphate proteoglycan. In addition, when EHS tissue was incubated with venom we detected a release of laminin into the supernatant, corroborating the occurrence of some basement membrane disruption. The venom-degrading effect on entactin was blocked by 1,10-phenanthroline, but not by other protease inhibitors such as PMSF, NEM or pepstatin-A. By using light microscopy associated with PAS staining we were able to identify that 1,10-phenanthroline also inhibits EHS-basement membrane disruption evoked by venom, corroborating that a metalloprotease of venom is involved in these effects. Degradation of these extracellular matrix molecules and the observed susceptibility of the basement membrane could lead to loss of vessel and glomerular integrity, resulting in haemorrhage and renal problems after envenomation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: heparan sulfate and growth factors ; heparan sulfate and phorbol ester ; heparan sulfate and cell cycle ; proteoglycans and cell cycle ; cell cycle; phorbol ester and heparan sulfate ; heparan sulfate and PKC ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fetal calf serum (FCS) and PMA (phorbol 12-myristate-13-acetate) specifically stimulate the synthesis of heparan sulfate proteoglycan in endothelial cells. Staurosporine and n-butanol, kinase inhibitors, abolish the PMA effect. Forskolin and 8-bromo adenosine 3′:5′-cyclic monophosphate, activators of, respectively, adenylate cyclase and protein kinase A cannot reproduce the PMA effect. The kinetics of cell entry into S phase of the endothelial cells was determined by DNA synthesis ([3H]-thymidine and Br-dU incorporation), and flow cytometry. The mitogenic effect of fetal calf serum is abolished by PMA. Also, PMA pre-treatment inhibits the enhanced synthesis of heparan sulfate proteoglycan after a second PMA exposure. Remarkably, the stimulation of heparan sulfate proteoglycan synthesis by fetal calf serum and PMA seems to be mainly restricted to G1 phase. Therefore fetal calf serum and PMA cause an enhanced synthesis of heparan sulfate proteoglycan, and PMA causes a cell cycle block at G1 phase. J. Cell. Biochem. 70:563-572, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...