Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 80 (1996), S. 3646-3655 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A traveling electric potential hill has been used to generate an ion beam with an energy distribution that is mass dependent from a monoenergetic ion beam of mixed masses. This effect can be utilized as a novel method for mass separation applied to identification or enrichment of ions (e.g., of elements, isotopes, or molecules). This theory for mass-selective acceleration is presented here and is shown to be confirmed by experiment and by a time-dependent particle-in-cell computer simulation. Results show that monoenergetic ions with the particular mass of choice are accelerated by controlling the hill potential and the hill velocity. The hill velocity is typically 20%–30% faster than the ions to be accelerated. The ability of the hill to pickup a particular mass uses the fact that small kinetic energy differences in the lab frame appear much larger in the moving hill frame. Ions will gain energy from the approaching hill if their relative energy in the moving hill frame is less than the peak potential of the hill. The final energy of these accelerated ions can be several times the source energy, which facilitates energy filtering for mass purification or identification. If the hill potential is chosen to accelerate multiple masses, the heaviest mass will have the greatest final energy. Hence, choosing the appropriate hill potential and collector retarding voltage will isolate ions with the lightest, heaviest, or intermediate mass. In the experimental device, called a Solitron, purified 20Ne and 22Ne are extracted from a ribbon beam of neon that is originally composed of 20Ne:22Ne in the natural ratio of 91:9. The isotopic content of the processed beam is determined by measuring the energy distribution of the detected current. These results agree with the theory. In addition to mass selectivity, our theory can also be applied to the filtration of an ion beam according to charge state or energy. Because of this variety of properties, the Solitron is envisioned to have broad applications. The primary application is for the enrichment of stable isotopes for medical and industrial tracers. Other applications include mass analysis of unknown gases (atomic and molecular) and metals, extracting single charge states from a multiply charged beam, accelerating the high energy tail in a beam or plasma with a velocity distribution, and beam bunching.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Environment and Resources 1 (1976), S. 213-255 
    ISSN: 0362-1626
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The nature of a rigid, flutelike M=1 instability as seen in the Tara tandem mirror [Nucl. Fusion 22, 549 (1982); Plasma Physics and Controlled Nuclear Fusion 1984 (IAEA, Vienna, 1985), Vol. 2, p. 285] is discussed. Radial density and light emission profiles obtained by inverting chord measurements are compared to end loss radial profiles during the evolution of the mode to its nonlinear saturated state. This final state is characterized by a coherent, flutelike motion of the plasma as a whole about the machine axis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Plasma production and heating in the central cell of the Tara tandem mirror [Nucl. Fusion 22, 549 (1982); Plasma Physics and Controlled Nuclear Fusion Research, 1986, Proceedings of the 11th International Conference, Kyoto, Japan (IAEA, Vienna, 1987), Vol. 2, p. 251] have been studied. Using radio-frequency excitation by a slot antenna in the ion cyclotron frequency range (ICRF), plasmas with a peak β⊥ of 3%, density of 4×1012 cm−3, ion temperature of 800 eV, and electron temperature of 75–100 eV were routinely produced. The plasma radius decreased with increasing ICRF power, causing reduced ICRF coupling and saturation of the plasma beta. About 70% of the applied ICRF power can be accounted for in direct heating of both ions and electrons. Wave field measurements have identified the applied ICRF to be the slow, ion cyclotron wave. In operation without end plugging, the plasma parameters were limited by poor axial confinement and the requirements for maintenance of magnetohydrodynamic stability and microstability.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 2168-2172 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Neutral and plasma density have been measured in the north well of the central cell of the Tara tandem mirror [Nucl. Fusion 22, 549 (1982)]. The electron plasma density and temperature on the magnetic axis were measured by Thomson scattering to be about 3×1012 cm−3 and 70 eV, respectively. The corresponding axial neutral hydrogen density was found to be 1 ×109 cm−3, while near the plasma edge at r=15 cm it reached 1×1010 cm−3. The fill gas density at r≥22.5 cm was ≈1011 cm−3. Additional information from secondary electron detectors was used to estimate the radial ion temperature distribution, which was found to have about the same width, 12 cm, as the plasma density. The resulting ion pressure profile is peaked compared to the electron pressure profile. Charge exchange losses in the well are found to have a maximum at a radius equal to half the e-folding distance of the plasma density and ion temperature distributions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 2173-2184 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Experimental radial ion transport rates and diffusion coefficients are presented for the Constance-B magnetic mirror [Phys. Rev. Lett. 58, 1853 (1987)]. The transport experiments are performed by measuring steady state equilibrium radial profiles of plasma density, ionization source, end loss current, electric field, electron temperature, and ion temperature. A charge coupled device (CCD) camera system [Rev. Sci. Instrum. 60, 2835 (1989)] is used to measure the two-dimensional radial density, source, and electron temperature profiles. End loss diagnostics including movable Faraday cups, electrostatic end loss analyzers, and an ion time-of-flight analyzer [Rev. Sci. Instrum. 59, 601 (1988)] are used to measure radial profiles of potential and ion temperature. The ion confinement time perpendicular to the magnetic field is found to be an order of magnitude shorter than predicted by classical and neoclassical transport theories. The radial profiles of the perpendicular diffusion coefficient (D⊥) are presented for hydrogen, helium, and argon plasmas. The coefficients are a factor of 10 larger than the maximum classical and neoclassical coefficients in all three plasmas. Plasma fluctuations resulting from whistler mode microinstability [Phys. Rev. Lett. 59, 1821 (1987)] as well as nonaxisymmetric potentials are suggested as possible explanations for the experimentally measured radial transport rate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An instability with azimuthal mode number m≥3 localized to an axisymmetric end cell of the Tara tandem mirror [Nucl. Fusion 22, 549 (1982)] has been observed, most prominently during strong ion cyclotron resonance heating in the end cell. The instability, which causes enhanced radial losses, becomes either more stable or flutelike when the connection (passing fraction) between the central cell and end cell is increased, depending on whether sufficient stabilization is provided in the central cell. The beta is sufficiently low to rule out the possibility of magnetohydrodynamic ballooning modes. Based on the plasma parameters, the instability appears to be a collisionless curvature-driven trapped particle mode that has been predicted to be unstable in linked minimum- and maximum-B mirror devices.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The stability of plasmas produced by radio-frequency heating in the ion cyclotron frequency range (ICRF) has been studied in the central cell of the Tara tandem mirror [Nucl. Fusion 22, 549 (1982); Plasma Physics and Controlled Nuclear Fusion Research 1986, Proceedings of the 11th International Conference, Kyoto (IAEA, Vienna, 1987), Vol. II, p. 251]. Ion cyclotron wave excitation by a slot antenna provided stability against macroscopic plasma motions in an axisymmetric configuration. The maintenance of macroscopic stability depended on the ICRF power, gas fueling rate, ion cyclotron resonance location, and ω/ωci at the antenna location. The ICRF ponderomotive force model is consistent with many of the observed stability features and predicts that the E+ component of the ion cyclotron wave was responsible for the stabilization. The Alfvén ion cyclotron microinstability was observed when the plasma β⊥ and anisotropy were sufficiently high. Magnetic probe measurements of the unstable mode identified it as an ion cyclotron wave and the instability threshold was within a factor of 2 of the theoretical value.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A divertor coil set has been installed on the Tara tandem mirror [Nucl. Fusion 22, 549 (1982); Plasma Physics and Controlled Nuclear Fusion Research 1984 (IAEA, Vienna, 1985), Vol. 2, p. 285] for stabilization of m=1 flutelike modes. The effectiveness of divertor stabilization is discussed in experiments where m=1 modes are driven to instability by plug electron cyclotron heating (ECH) in an ion cyclotron heated (ICH) plasma. The instability onset is characterized by thresholds in ECH power, fueling rate, ICH power, and mapping radius of the divertor null. In general, the stability is enhanced by mapping the null radially inwards into the plasma. The interdependence of these parameters and their effect on equilibrium profiles and stability boundaries are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1470-1472 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A laser fluorescence diagnostic has been used for measuring the neutral hydrogen density in the central cell of the Tara thermal barrier tandem mirror. Experiments have been performed using laser-induced, resonance fluorescence detection of Hα (6563-A(ring)) radiation. Measurements were made at a number of radial positions with 1-cm resolution, from the magnetic axis to near the plasma limiter. Stray laser light contributions to the signal were eliminated with a double-pulse technique. For comparison, the chord-averaged plasma Hα radiation was analyzed under the identical conditions for which laser fluorescence data were taken.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...