Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 32 (1992), S. 203-208 
    ISSN: 1040-452X
    Keywords: DNA ; RNA ; P1 ; PI1 ; PI2 ; Lamin B ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The nuclear matrix is thought to be responsible for DNA organization, DNA replication, RNA synthesis, and RNA processing. We have looked for the presence of nuclear matrix antigens during early mouse embryogenesis. Antibodies to peripheral and interior antigens (P1, PI1, PI2, and lamin B) were used to immunolocalize nuclear matrix antigens in germinal vesicle oocytes, metaphase II oocytes, zygotes, two-cell-stage embryos, and eight-cell stage embryos. All antibodies reacted with the nuclei of germinal vesicle oocytes, and two- and eight-cell-stage embryos; however, only P1 and lamin B were present at the pronuclear stage. In eggs collected at the pronuclear stage and cultured to the late two-cell stage in the presence of α-amanitin, the matrix morphology was altered for PI1 and PI2. α-Amanitin had no affect on the distribution of P1 or lamin B antigens. If α-amanitin was added 2 hr after cleavage to the two-cell stage, the normal staining pattern of PI2 was retained. These results suggest that the presence of specific components of an internal matrix is correlated with normal genomic activity.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 28 (1991), S. 405-409 
    ISSN: 1040-452X
    Keywords: Nuclear transfer ; Pronuclear formation ; Glucosamine ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: These studies were undertaken to understand the biological basis of artificially induced activation of meiotic metaphase II oocytes and to develop a source of oocytes as recipients for cloning by nuclear transfer. In vitro matured porcine oocytes were pulsed with various voltages of electricity and evalulated for pronuclear formation. The percentage of eggs that activated was significantly greater for the higher voltages. The effect on activation of the temperature of the ovaries returning from the abattoir was evaluated and it was found that oocytes derived from ovaries returning at 29°C activated at lower rates (45.5%) than those returning at 36°C (78.9%). An experiment was designed to evaluate the pH of electroporation medium (EM) and the duration of exposure to EM on activation. Oocytes were placed in EM at various pHs for 5 minutes, pulsed, and immediately removed to TL-Hepes or allowed an additional 2 minutes in EM prior to rinsing in TL-Hepes. The results indicate an optimum activation rate at a pH of 7.0 and allowing the additional 2 minutes in EM. Additional glucosamine (5 mM) had no affect on development of the oocyte to metaphase but reduced the percent pronuclear formation from 61% and 47%. A final experiment evaluated the developmental competence of oocytes subjected to a optimum combination of the above treatments and illustrated that a significant portion of the activated oocytes can show limited signs of cleavage. Thus in vitro matured pig oocytes can be induced to activate at high rates.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 34 (1993), S. 250-254 
    ISSN: 1040-452X
    Keywords: Zwitterionic amino acids ; Oocytes ; Blastocysts ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Amino acid transport is facilitated by specific transporters within the plasma membrane of the cell. In mouse oocytes and cleavage-stage conceptus Na+-dependent L-alanine and L-leucine transport are nearly undetectable. Sodium-dependent transport via system BO,+ in the mouse conceptus increases greatly between the 8-cell and blastocyst stages. By contrast, data presented here for the pig show that L-alanine and L-leucine transport is mainly Na+-dependent in the oocyte; this Na+-dependent component of transport becomes undetectable by the blastocyst stage. The Na+-dependent component of transport in oocytes is inhibited by BCH (2-aminoendo-bicyclo[2.2.1] hexane-2-carboxylic acid) and L-lysine and thus could be a form of system BO,+. In both oocytes and blastocysts Na+-independent L-leucine transport is inhibited by BCH, which is consistent with the presence of system L. The dramatic decrease in Na+-dependent amino acid transport activity could occur in pig conceptuses in association with the onset of RNA synthesis during the 4-cell stage. Regardless of the precise time during development at which it occurs, however, this dramatic, developmentally regulated decrease in Na+-dependent alanine and leucine transport activity contrasts sharply with the large increase in Na+-dependent system BO,+ activity that occurs during preimplantation development of murine conceptuses. Elucidation of the molecular mechanisms by which these changes occur should contribute to an understanding of regulation of gene expression during early development. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 36 (1993), S. 49-52 
    ISSN: 1040-452X
    Keywords: Amino acid transport ; L-aspartate ; Gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Amino acid transport is facilitated by specific transporters within the plasma membrane of the cell. Mediated Na+-independent transport of L-glutamate can be easily detected in mouse oocytes, but it is nearly undetectable in blastocyst-stage embryos. In contrast, the Na+-dependent transport of L-aspartate is not detectable in oocytes, but it is detectable in eight-cell embryos and reaches relatively high levels by the blastocyst stage. It is believed that the amino acid transporters responsible are systems x-c and X-AG, respectively. Here we report the detection of Na+-dependent L-aspartate transport, which increased as pig blastocysts developed, although Na+-dependent aspartate transport was not detected in pig oocytes. Mediated Na+-independent L-glutamate transport was not detected in pig oocytes, in contrast to the mouse, nor in early or hatched pig blastocysts. Thus, while the developmental regulation of system X-AG is similar in both the pig and the mouse, system x-c was not detectable in pig oocytes or blastocysts. Elucidation of the molecular mechanisms controlling amino acid transport and other gene expression in early embryos should contribute to an understanding of whether and even why some aspects of developmental regulation of gene expression may need to differ among species. © 1993 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Molecular Reproduction and Development 28 (1991), S. 70-73 
    ISSN: 1040-452X
    Keywords: A23187 ; In vitro maturation ; lonophore ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: These studies were conducted to examine activation of in vitro-matured porcine oocytes in response to an electrical stimulus or to an ionophore. Cumulus-enclosed porcine oocytes were incubated in maturation medium supplemented with either FSH and LH (MM:Exp.1) or pregnant mare serum gonadotropin (PMSG; MMP: experiments 2-4) at 39°C in 5% CO2:95% air with high humidity. In experiment 1, groups of oocytes were stripped of cumulus and then shampulsed (control) or electrically pulsed with a Zimmerman Cell Fusion unit at 24, 31, 41, 48, and 65 h of incubation. Control oocytes were exposed to the activation medium for 20 sec, whereas oocytes to be pulsed were subjected to a single activation pulse (120 V, 30 μsec). Oocytes were cultured for an additional 24 h and then fixed and examined. For oocytes pulsed at 24, 31, 41, 48, and 65 h, the proportions which activated were 0, 0, 87, 88, and 83%, respectively. In experiment 2, oocytes were electrically or sham-pulsed with a BTX 200 Embryomanipulation System at 24, 30, and 40 h of incubation and respective proportions of oocytes activating were 27%, 39%, and 72%. In experiment 3, oocytes were subjected to 0, 1, or 2 activation pulses after 41 h of incubation in MM-P. Double-pulsing halved the proportion of activated oocytes (P〈.0001). In experiment 4, oocytes were subjected to 0, 25, 50, or 100 μM ionophore at 48 h of incubation. Proportions of oocytes activated by ionophore were greater than for control (P 〈 .05), but activation was not increased by increasing dose of ionophore. These results indicate that porcine oocytes may respond to an activation stimulus by 24 h of incubation, long before maturation is normally completed. Activation can be achieved also with an ionophore, as described previosly for other species.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Gamete Research 19 (1988), S. 359-367 
    ISSN: 0148-7280
    Keywords: mouse ; embryo ; chimera ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Previous studies have shown that early embryos contain information that can alter the developmental fate of adjacent cells and transferred nuclei. In this report we show that a specific combination of cells from early murine embryos, a single blastomere from an eight-cell embryo placed under the zona pellucida with a two-cell embryo, results in a difference in incorporation of 3H-uridine and expression of two protein bands between the chimeric treatment group and the nonchimeric controls, a single blastomere from an eight-cell embryo in a separate zona pellucida and a two-cell embryo. The incorporation of 3H-uridine in the chimeric group and nonchimeric control group was significantly different at 45 hours after chimerization (P 〈 .02). A stage-specific protein band (52k) on a polyacrylamide gel detected with fluorography was found to be qualitatively different (present more often; P 〈 .01) and another stage-specific protein band (48k) was found to be quantitatively different (more protein; P equals; .07) in the chimeric treatment vs. the nonchimeric controls at 45 hours after chimerization. These results suggest communication between the cells resulting in a change in their incorporation of uridine and protein synthetic profiles.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...