Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Synchronous oscillations of intracellular calcium concentration ([Ca2+]i) and of membrane potential occurred in a limited population of glutamatergic hippocampal neurons grown in primary cultures. The oscillatory activity occurred in synaptically connected cells only when they were in the presence of astrocytes. Microcultures containing only one or a few neurons also displayed oscillatory activity, provided that glial cells participated in the network. The glutamate-transporter inhibitors L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC) and dihydrokainate, which produce an accumulation of glutamate in the synaptic microenvironment, impaired the oscillatory activity. Moreover, in neurons not spontaneously oscillating, though in the presence of astrocytes, oscillations were induced by exogenous l-glutamate, but not by the stereoisomer d-glutamate, which is not taken up by glutamate transporters. These data demonstrate that astrocytes are essential for neuronal oscillatory activity and provide evidence that removal of glutamate from the synaptic environment is one of the major mechanisms by which glial cells allow the repetitive excitation of the postsynaptic cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We have detected spontaneous, synchronous calcium oscillations, associated with variations in membrane potential, in hippocampal neurons maintained in primary culture. The oscillatory activity is synaptically driven, as it is blocked by tetrodotoxin, by the glutamate receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and by toxins inhibiting neurotransmitter release from presynaptic nerve endings. Neuronal oscillations do not require for their expression the presence of a polyneuronal network and are not primarily influenced by the γ-aminobutyric acid (GABAA) receptor antagonist picrotoxin, suggesting that they entirely rely on glutamatergic neurotransmission. Synaptic and intrinsic conductances shape the synchronized oscillations in hippocampal neurons. The concomitant activation of N-methyl- d-aspartate (NMDA) receptors and voltage-activated L-type calcium channels allows calcium entering from the extracellular medium and sustaining the long depolarization, which shapes every single calcium wave.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...