Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0006-3592
    Keywords: Fusarium moniliforme ; hydrodynamics ; image analysis ; kinetic energy ; morphology stirred bioreactor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The influence of two mixing geometries (at the same scale) with different flow energy distributions on the performance of the gibberellic acid fermentation and on the morphology of the producing fungus Fusarium moniliforme was investigated. Fermentations were performed using a turbine mixing system (TMS) and a counterflow mixing system (CMS), which were high and low power number mixing systems, respectively. Different agitator speed rate profiles were maintained to obtain equal specific power inputs to both mixing systems. Substantial differences in morphology and productivity of F. moniliforme were found. To investigate the causes of these differences, local values and spectra of the kinetic energy of flow fluctuations were measured during the fermentations using a stirring intensity measuring device (SIMD) and a frequency spectrum analyzer. Biomass and gibberellic acid concentrations were found to be higher in the TMS, where the energy distribution was less even, and Vi/here the main part of the energy was at small frequencies (large eddies). An automated image analysis method was used for quantitative characterization of F. moniliforme freely dispersed mycelia and clump morphology. A higher proportion of clumped mycelia with clumps of larger area, perimeter, and roughness was observed in the TMS. A correlation between the morphology and productivity was found, and TMS favored the development of more productive mycelia with longer and thinner hyphae. Introduced power was not a good parameter to characterize different impellers, even at a given scale. © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Berlin : Wiley-Blackwell
    Acta Biotechnologica 15 (1995), S. 355-366 
    ISSN: 0138-4988
    Keywords: Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Process Engineering, Biotechnology, Nutrition Technology
    Notes: The influence of two mixing systems on the principal parameters of mycelial fermentations of Aspergillus niger, Fusicoccum amygdali Del. and Fusarium moniliforme Sheld. as well as their metabolite citric acid, fusicoccin and gibberellic acid production was analyzed from the viewpoint of flow energy distribution in a bioreactor.The growth and metabolite synthesis during fermentation was compared under different mixing conditions in the fermenter FU-8 with a turbine mixing system (TMS) and a counterflow mixing system (CMS). It was found that the growth, productivity and respiration characteristics as well as the morphology of these cultures varied dependent on the mixing system and agitation regime used. The counterflow mixing system was more favourable for large agglomerates (F. amygdali) or soft pellets (A. niger) forming fungi, while the turbine mixing system was more effective for F. moniliforme growing in the form of small clumps and freely dispersed hyphae. Flow characteristics under different mixing conditions were analyzed in a model fermenter.The kinetic energy of flow fluctuations was measured in gassed and ungassed water and different fermentation broth systems by using a Stirring Intensity Measuring Device (SIMD-F1). The difference of the energy values at different points was better expressed in the fermenter with a turbine mixing system in comparison with that having a counterflow mixing system. High viscous F. amygdali and A. niger broth provided higher energy values compared to water and low viscous F. moniliforme broth. It was observed that the intensity of growth and the intensity of the synthesis decreased at very high energy values, which was obviously connected to the influence of the irreversible shear stress on the mycelial morphology.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...