Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Chichester [u.a.] : Wiley-Blackwell
    International Journal for Numerical Methods in Engineering 40 (1997), S. 1231-1261 
    ISSN: 0029-5981
    Keywords: float zone ; crystal growth ; solidification ; moving boundary ; thermocapillary transport ; Engineering ; Numerical Methods and Modeling
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Mathematics , Technology
    Notes: A computational capability has been developed to predict the free surface shape, heat transfer and melt-crystal interface shapes in float-zone processing. A moving boundary, second order, finite volume, incompressible Navier-Stokes solver has been developed for the fluid flow and heat transfer calculations. The salient features of the approach include solving the dynamic form of the Young-Laplace equation for the free surface shape, dynamic remeshing to fit the free boundary, a flexible, multi-block, grid generation procedure and the enthalpy method to capture the melt-crystal and the melt-feed interfaces without the need for explicit interface tracking. Important convective heat transfer modes; natural convection and thermocapillary convection have been computed. It is shown that, whereas the overall heat transfer is not substantially affected by convection, the melt-crystal interface shape acquires significant distortion due to the redistribution of the temperature field by the thermocapillary and buoyancy-induced convective mechanisms. It is also demonstrated that the interaction of natural and thermocapillary convection can reduce the melt-crystal interface distortion if they act in opposing directions. It is found that the meniscus deformation can cause the height of the zone to increase but the qualitative nature of the melt-solid interface shapes are not significantly affected. Results are compared with literature to validate the predictive capability developed in this work. © 1997 by John Wiley & Sons, Ltd.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...