Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: α-Secretase cleaves the full-length Alzheimer's amyloid precursor protein (APP) within the amyloid β peptide sequence, thus precluding amyloid formation. The resultant soluble truncated APP is constitutively secreted. This nonamyloidogenic processing of APP is increased on stimulation of the phospholipase C/protein kinase C pathway by phorbol esters. Here we used C6 cells transfected with APP751 to examine whether the α-secretase cleavage is regulated by the adenylate cyclase signal transduction pathway. Forskolin, an activator of adenylate cyclase, inhibited both the constitutive and phorbol ester-stimulated secretion of nexin II (NXII), the secreted product of the α-secretase cleavage of APP751. At 1 µM, forskolin inhibited secretion of NXII by ∼50% without affecting either the intracellular levels of total APP or the secretion of secretory alkaline phosphatase. In contrast, 1,9-dideoxyforskolin, an inactive analogue of forskolin, did not affect secretion of NXII. These results indicated that forskolin specifically inhibited the α-secretase cleavage of APP751. Forskolin treatment increased the intracellular concentration of cyclic AMP (cAMP), suggesting that the forskolin effects on APP cleavage may be mediated by cAMP. In support of this suggestion, both dibutyryl cAMP, a cAMP analogue, and isoproterenol, an activator of adenylate cyclase, also inhibited secretion of NXII. These data indicate that forskolin inhibition of the nonamyloidogenic cleavage of APP is mediated by the second messenger cAMP, which together with the protein kinase C signal transduction pathway modulates the secretory cleavage of APP.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The amyloid β peptide (Aβ) of Alzheimer disease is derived from the proteolytic processing of the amyloid precursor proteins (APPs), which are considered type I transmembrane proteins. Here we report that the soluble fraction of isolated adrenal medullary chromaffin granules (CG), a model neuronal secretory vesicle system, contains an antigen that immunochemically and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was indistinguishable from full-length APP. A truncated APP fragment with intact Aβ sequence was also detected in the soluble fraction of CG. In vitro experiments showed that full-length APP was solubilized from CG membranes at 37°C as a function of pH, with a peak of activity between pH 8.5 and pH 9.0. Solubilization of full-length APP was inhibited by several protease inhibitors, including aprotinin, cystatin, and iodoacetamide, by the divalent cations Ca2+ and Zn2+, and by preheating of the membranes. These results are consistent with and suggest the involvement of an enzymatic mechanism in the solubilization of potentially amyloidogenic full-length APP. Production of Aβ from a transmembrane APP predicts a proteolytic cleavage within the lipid bilayer, a site relatively inaccessible to proteases. Thus, the detected soluble, potentially amyloidogenic, full-length APP may be a substrate for the proteases producing Aβ. The detection of soluble APP with intact Aβ sequence in secretory vesicles is consistent with the extracellular topology of amyloid depositions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The Alzheimer amyloid precursor (APP) protein is a member of a family of glycoproteins that includes the amyloid precursor-like proteins (APLPs). Previously, we showed that in C6 glioma cell cultures, secreted APP nexin II occurs as the core protein of a chondroitin sulfate proteoglycan (CSPG). Here, we report that among seven untransfected cell lines, expression of secreted APP CSPG was restricted to two cell lines of neural origin, namely, C6 glioma and Neuro-2a neuroblastoma (N2a) cells. Addition of dibutyryl cyclic AMP in N2a cultures, a treatment that induces the neuronal phenotype in these cells, resulted in a significant reduction in the amount of the secreted APP CSPG, although secretion of APP was only marginally affected. Growth in the presence of serum increased the size of the secreted APP CSPG, suggesting that the number and/or length of the chondroitin sulfate (CS) chains attached to the core APP varies with growth conditions. Extensive mapping with epitope-specific anti-bodies suggested that a CS chain is attached within or proximal to the Aβ sequence of APP. In contrast to the restricted expression of the APP CSPG, expression of secreted APLP2 CSPGs was observed in all cell lines examined. After chondroitinase treatment, two core proteins of ∼100 and 110 kDa were obtained that reacted with an APLP2-specific antiserum, suggesting that non-transfected cell lines contain at least two endogenous APLP2 CSPGs, probably derived by alternative splicing of the APLP2 KPI domain. The fraction of the APLP2 proteins in the CSPG form was dependent on the particular cell line examined. The proteoglycan nature of APP and APLP2 suggests that addition of the CS glycosaminoglycan chains is important for the implementation of the biological function of these proteins. However, the differential expression of these two proteoglycans suggests that their physiological roles and their possible involvement in Alzheimer's disease may differ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Cell culture studies have shown that the Alzheimer amyloid precursor protein (APP) is secreted after full-length APP is cleaved by a putative secretase at the Lys16-Leu17 bond (secretase cleavage I) of the amyloid peptide sequence. Because this cleavage event is incompatible with amyloid production, it has been assumed that secreted APP cannot serve as a precursor of the amyloid depositions observed in Alzheimer's disease. Here we show that in neuronally differentiated PC12 cells and human kidney 293 cell cultures a portion of the secreted extracytoplasmic APP reacted specifically with both a monoclonal antibody recognizing amyloid protein residues Leu17-Val24 and a polyclonal antiserum directed against amyloid protein residues Ala21-Lys28. Furthermore, this APP failed to react with antisera recognizing the cytoplasmic domain of the full-length protein. These data indicate the presence of an alternative APP secretase cleavage site (secretase cleavage II), C-terminal to the predominant secretase cleavage I. Depending on the exact location of cleavage site II, potentially amyloidogenic secreted APP species may be produced.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Presenilin 1 is an integral membrane protein specifically cleaved to yield an N-terminal and a C-terminal fragment, both membrane-associated. More than 40 presenilin 1 mutations have been linked to early-onset familial Alzheimer disease, although the mechanism by which these mutations induce the Alzheimer disease neuropathology is not clear. Presenilin 1 is expressed predominantly in neurons, suggesting that the familial Alzheimer disease mutants may compromise or change the neuronal function(s) of the wild-type protein. To elucidate the function of this protein, we studied its expression in neuronal vesicular systems using as models the chromaffin granules of the neuroendocrine chromaffin cells and the major categories of brain neuronal vesicles, including the small clear-core synaptic vesicles, the large dense-core vesicles, and the somatodendritic and nerve terminal clathrin-coated vesicles. Both the N- and C-terminal presenilin 1 proteolytic fragments were greatly enriched in chromaffin granule and neuronal large dense-core vesicle membranes, indicating that these fragments are targeted to these vesicles and may regulate the large dense-core vesicle-mediated secretion of neuropeptides and neurotransmitters at synaptic sites. The presenilin 1 fragments were also enriched in the somatodendritic clathrin-coated vesicle membranes, suggesting that they are targeted to the somatodendritic membrane, where they may regulate constitutive secretion and endocytosis. In contrast, these fragments were not enriched in the small clear-core synaptic vesicle or in the nerve terminal clathrin-coated vesicle membranes. Taken together, our data indicate that presenilin 1 proteolytic fragments are targeted to specific populations of neuronal vesicles where they may regulate vesicular function. Although full-length presenilin 1 was present in crude homogenates, it was not detected in any of the vesicles studied, indicating that, unlike the presenilin fragments, full-length protein may not have a vesicular function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The carboxy-terminal ends of the 40- and 42-amino acids amyloid β-protein (Aβ) may be generated by the action of at least two different proteases termed γ(40)- and γ(42)-secretase, respectively. To examine the cleavage specificity of the two proteases, we treated amyloid precursor protein (APP)-transfected cell cultures with several dipeptidyl aldehydes including N-benzyloxycarbonyl-Leu-leucinal (Z-LL-CHO) and the newly synthesized N-benzyloxycarbonyl-Val-leucinal (Z-VL-CHO). All dipeptidyl aldehydes tested inhibited production of both Aβ1-40 and Aβ1-42. Changes in the P1 and P2 residues of these aldehydes, however, indicated that the amino acids occupying these positions are important for the efficient inhibition of γ-secretases. Peptidyl aldehydes inhibit both cysteine and serine proteases, suggesting that the two γ-secretases belong to one of these mechanistic classes. To differentiate between the two classes of proteases, we treated our cultures with the specific cysteine protease inhibitor E-64d. This agent inhibited production of secreted Aβ1-40, with a concomitant accumulation of its cellular precursor indicating that γ(40)-secretase is a cysteine protease. In contrast, this treatment increased production of secreted Aβ1-42. No inhibition of Aβ production was observed with the potent calpain inhibitor I (acetyl-Leu-Leu-norleucinal), suggesting that calpain is not involved. Together, these results indicate that γ(40)-secretase is a cysteine protease distinct from calpain, whereas γ(42)-secretase may be a serine protease. In addition, the two secretases may compete for the same substrate. Dipeptidyl aldehyde treatment of cultures transfected with APP carrying the Swedish mutation resulted in the accumulation of the β-secretase C-terminal APP fragment and a decrease of the α-secretase C-terminal APP fragment, indicating that this mutation shifts APP cleavage from the α-secretase site to the β-secretase site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 695 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: Amyloid β protein (β/A4 or Aβ), the main protcinaceous component of the amyloid depositions of the Alzheimer's brain, derives from the proteolytic processing of the amyloid precursor protein (APP). Cleavage of the amyloid precursor by at least two distinct secretase activities produces soluble secreted APP. The major secretase cleavage (site I) takes place between Aβ 16 and 17, while the minor cleavage (site II) takes place after Aβ Lys 28 and may produce potentially amyloidogenic secreted APP. Full-length cellular APP is cleaved by secretase intracellularly in the Trans-Golgi Network (TGN) or in post-Golgi vesicles. The resultant soluble APP is transported to the plasma membrane and exocytosed.The biological activity of the APP is still not completely understood, although it seems to act as a cell adhesion molecule. Recent studies have shown that in glioma cells, most of the soluble secreted APP occurs as a chondroitin sulfate proteoglycan (CSPG). In addition, full length APP CSPG has been detected in neuroblastoma and fibroblast cells as well as on the surface of glioma cells, and in human brain. These results suggest that the proteoglycan nature of the APP proteins may be important for their biological function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0533
    Keywords: Key words Alzheimer’s disease ; Cerebral cortex ; Neuronal loss ; Pick’s disease ; Presenilin-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Recent studies have reported that neuronal populations expressing low levels of presenilin-1 (PS-1) display increased vulnerability in late-onset sporadic Alzheimer’s disease (AD). To examine whether this phenomenon also occurs in other neurodegenerative diseases, we performed a quantitative immunocytochemical study of PS-1 distribution in the cerebral cortex of Pick’s disease (PiD) cases and non-demented individuals. In PiD cases, the percentage of PS-1-containing, Pick body (PB)-free neurons was significantly elevated only in cortical areas showing neuronal loss. In these areas, PS-1 levels, measured by immunoblotting, were often higher in PiD compared to non-demented cases. Moreover, PS-1 immunoreactivity was significantly reduced in PB-containing neurons. These data suggest that as previously shown in AD, low cellular expression of PS-1 may be associated with increased neuronal loss and cellular degeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1574-4647
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Familial Alzheimer Disease (FAD) presents as a diagnostically unique disorder having an autosomal dominant form of inheritance with an age-dependent penetrance. Recent mapping of the FAD and beta-amyloid protein (AP) genes to human chromosome 21 has raised questions as to the role of AP in the development of FAD. The involvement of gene(s) on chromosome 21 in FAD was suggested because of the observation that individuals with Down Syndrome (DS) over the age of 40 all develop the neuropathological changes associated with AD. Refinement of the AP mapping has eliminated this locus as being the site of the primary genetic defect causing FAD. This leads to speculation as to the mutation(s) responsible for and the role of gene(s) on chromosome 21 involved in FAD.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...