Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Environment and Resources 25 (2000), S. 601-627 
    ISSN: 1056-3466
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Low environmental damage is one of the main justifications for continued efforts to reduce energy consumption and to shift to cleaner sources such as solar energy, especially now that supply security has slipped from public consciousness. In recent years there has been much progress in the analysis of environmental damages, in particular thanks to the ExternE (External Costs of Energy) Project of the European Commission. This paper presents a summary of the methodology and key results for the external costs of the major energy technologies. Even though the uncertainties are large, the results provide substantial evidence that the classic air pollutants (particles, NOx and SOx) from fossil fuels impose significant public health costs, comparable to the cost of global warming from CO2 emissions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    350 Main Street , Malden , MA 02148 , USA , and 9600 Garsington Road , Oxford OX4 2DQ , UK . : Blackwell Publishing, Inc.
    Risk analysis 24 (2004), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: This article describes a simple model for quantifying the health impacts of toxic metal emissions. In contrast to most traditional models it calculates the expectation value of the total damage (summed over the total population and over all time) for typical emission sites, rather than “worst-case” estimates for specific sites or episodes. Such a model is needed for the evaluation of many environmental policy measures, e.g., the optimal level of pollution taxes or emission limits. Based on the methodology that has been developed by USEPA for the assessment of multimedia pathways, the equations and parameters are assembled for the assessment of As, Cd, Cr, Hg, Ni, and Pb, and some typical results are presented (the dose from seafood is not included and for Hg the results are extremely uncertain); the model is freely available on the web. The structure of the model is very simple because, as we show, if the parameters can be approximated by time-independent constants (the case for the USEPA methodology), the total impacts can be calculated with steady-state models even though the environment is never in steady state. The collective ingestion dose is found to be roughly 2 orders of magnitude larger than the collective dose via inhalation. The uncertainties are large, easily an order of magnitude, the main uncertainties arising from the parameter values of the model, in particular the transfer factors. Using linearized dose-response functions, estimates are provided for cancers due to As, Cd, Cr, and Ni as well as IQ loss due to Pb emissions in Europe.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Boston, USA and Oxford, UK : Blackwell Publishers Inc.
    Risk analysis 21 (2001), S. 0 
    ISSN: 1539-6924
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: To analyze the loss of life expectancy (LLE) due to air pollution and the associated social cost, a dynamic model was developed that took into account the decrease of risk after the termination of an exposure to pollution. A key parameter was the time constant for the decrease of risk, for which estimates from studies of smoking were used. A sensitivity analysis showed that the precise value of the time constant(s) was not critical for the resulting LLE. An interesting aspect of the model was that the relation between population total LLE and PM2.5 concentration was numerically almost indistinguishable from a straight line, even though the functional dependence was nonlinear. This essentially linear behavior implies that the detailed history of a change in concentration does not matter, except for the effects of discounting. This model was used to correct the data of the largest study of chronic mortality for variations in past exposure, performed by Pope et al. in 1995; the correction factor was shown to depend on assumptions about the relative toxicity of the components of PM2.5. In the European Union, an increment of 1 μg/m3 of PM2.5 for 1 year implies an average LLE of 0.22 days per person. With regard to the social cost of an air pollution pulse, it was found that for typical discount rates (3% to 8% real) the cost was reduced by a factor of about 0.4 to 0.6 relative to the case with zero discount rate, if the value of a life year was taken as given; if the value of a life year was calculated from the “value of statistical life” by assuming the latter as a series of discounted annual values, the cost varied by at most ±20% relative to the case with zero discount rate. To assess the uncertainties, this study also examined how the LLE depended on the demographics (mortality and age pyramid) of a population, and how it would change if the relative risk varied with age, in the manner suggested by smoking studies. These points were found to have a relatively small effect (compared to the epidemiological uncertainties) on the calculated LLE.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...