Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 580 (1990), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Archives of virology 43 (1973), S. 165-168 
    ISSN: 1432-8798
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4919
    Keywords: collagen transcription ; intronic Ap-1 ; fos jun trans-acting factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The first intron of the human Proα1(I) collagen gene contains an orientation-dependent enhancer composed of both positive and negative cis-acting elements involved in the transcriptional regulation of this gene. Deletion of a 360 bp Sau 3A intronic fragment spanning nucleotide + 494 to + 854 (S360) resulted in dramatic down-regulation of pCOL-KT (Thompson et al., J Biol Chem 266: 2549–2556, 1991). Using a DNaseI protection assay, we demonstrate a single footprint located at + 590 to + 615 in the S360 fragment; nuclear extracts prepared from mesenchymal and nonmesenchymal cells exhibited similar binding characteristics. A double stranded oligonucleotide representing a consensus Ap-1 binding sequence competed with S360 for binding. In contrast to what occurred in response to S360 deletion which was always accompanied by reduced expression, the deletion of the Ap-1 binding site (+ 598 to + 604) caused either increased or decreased expression of the reporter gene depending on the target cell. Site-directed mutations in the Ap-1-like cis-element of Proα1(I) were also tested in transient expression assays. Consistent with the paradoxical results of Ap-1 deletion, we observed that the functional consequences of mutations in the Ap-1 site also varied in different cells. In A204 cells, one point mutation, which resulted in the loss of protein binding to S360, led to increased CAT activity while another point mutant, which retained binding of the Ap-1 like trans-acting factor(s), showed decreased CAT expression. The effects of these two mutations in the HFL-1 cells were exactly opposite of what was seen for A204 cells. Based on these observations, we postulate that the Ap-1 site plays a critical role in the transcriptional activity of the human Proα1(I) gene. The implications of an apparently dual mode of regulation through a single cis-regulatory element are discussed. (Mol Cell Biochem 118: 119–129, 1992)
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 101 (1991), S. 73-81 
    ISSN: 1573-4919
    Keywords: monoclonal antibody ; transcription factor Sp1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Using a synthetic peptide that encompasses the zinc finger domain of the eukaryotic transcription factor Sp1, we produced a number of monoclonal antibodies that specifically reacted with the target antigen. Analysis by competitive inhibition assay of five of the monoclonal antibodies revealed that they all recognized a dominant epitope in the synthetic peptide and reacted strongly to recombinantly synthesized β-galactosidase-Sp1 fusion polypeptide. To determine cellular distribution of Sp1-like molecules, cytoplasmic and nuclear proteins from human lung fibroblasts (HFL-1) and a human rhabdomyosarcoma cell line (A204) were immunoblotted and reacted with our antibodies. In addition to the well characterized 95 Kd and 105 Kd proteins, considered to be the authentic Sp1 polypeptide, a number of other cellular proteins reacted with these antibodies. Immunofluorescence staining of the cells with mAb to the zinc finger of Sp1 also revealed cell-specific differences in intracellular distribution of Sp1-like molecules. Both cytoplasmic and nuclear staining was readily observed in the rhabdomyosarcoma cells. In contrast, while some HFL-1 cells exhibited staining of only cytoplasm, both cytoplasmic and nuclear immunofluorescence was seen in others.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 86 (1989), S. 5-18 
    ISSN: 1573-4919
    Keywords: collagen genes ; transcriptional and posttranscriptional control ; chromatin ; cis- and trans-acting factors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Collagens are a structurally and functionally heterogenous group of proteins encoded by a family of genes that share evolutionary history. Collagen gene expression is regulated both in developmental, tissue-specific manners as well as in response to a variety of biologic and pharmacologic inducers. In the present review we have attempted to synthesize a conceptual overview of the available information from studies aimed at deciphering the molecular mechanisms of collagen gene expression. We have chosen to focus our discussion mainly, although not exclusively, to observations relating to type I collagen gene for a number of practical reasons. The underlying theme that emerges from this survey of the literature is that the regulation of collagen gene expression is complex, utilizing transcriptional, posttranscriptional and translational mechanisms. Although the transcriptional control mechanisms that involve activation and modulation of collagen gene transcription by RNA polymerase 11 appear to predominate, preferential stabilization of collagen mRNAs and modulation of translational discrimination appear to play significant roles in the regulation of collagen biosynthesis under some physiological situations. Molecular organization of the regulatory regions of collagen genes reveal a mosaic of subdomains with overlapping sequence motifs, involved in positive and negative transcriptional regulation. The precise identity of the cis-acting subdomains of the promoter/enhancer-proximal DNA of collagen gene and how they interact with the trans-acting nuclear protein(s) have yet to be elucidated and will remain the focus of future studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1573-4919
    Keywords: prostaglandin ; cyclooxygenase ; transcriptional regulation ; gene expression ; promotor activation ; transcription ; endothelial cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Interleukin-1β (IL-1) is a potent inducer of cyclooxygenase-2 (COX-2) and prostaglandin biosynthesis in many types of cells, yet little is known about the molecular mechanisms regulating IL-1 mediated prostanoid biosynthesis in the endothelium of the microvasculature. Therefore, we examined the cis- and trans-acting factors regulating IL-1-induced COX-2 expression in the human microvascular endothelial cell line, HMEC-1. IL-1 enhanced steady state levels of COX-2 protein and mRNA synthesis by ≈ 2-fold which preceded a 2-fold increase in PGFα biosynthesis. Expression of a series of COX-2 promoter-luciferase constructs in IL-1 treated HMEC-1 cells revealed that the 'full length' (-1432/+59 bp) promoter was 10 times more active than the SV-40 promoter/enhancer and that it could be further activated by IL-1. Surprisingly however, all except for the shortest COX-2 promoter construct retained the ability to respond to IL-1 and luciferase activity driven by -191/+59 bp COX-2 promoter was as responsive to IL-1 as the full-length promoter. Moreover, site-directed promoter mutagenesis and electophoretic mobility shift assays (EMSA) indicate that the combinatorial actions of AP2, NF-IL6, and CRE elements are critical for both constitutive and IL-1-inducible COX-2 promoter activity. Understanding the mechanism(s) regulating COX-2 gene expression and prostaglandin biosynthesis in the microvasculature has important implications with regard to inflammation and angiogenesis in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 158 (1979), S. 33-42 
    ISSN: 1573-4919
    Keywords: okadaic acid ; collagen gene expression ; promoter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Expression of type I collagen genes is highly regulated and becomes abnormal in various pathological conditions, from excessive collagen production in fibrotic diseases to their downregulation in transformed cells. Some inflammatory cytokines and other ligands, capable of eliciting intracellular phosphorylation, can profoundly alter collagen gene expression. We investigated the role of serine/threonine protein phosphatases (PP) in the regulation of collagen gene expression. Biosynthesis of the endogenous type I procollagen, and expression of Proal(I) promoter-luciferase (Luc) constructs transfected in NIH3T3 fibroblasts, were evaluated in response to PP2A and PP I inhibitor okadaic acid (OA) and exogenously expressed PP catalytic subunits. OA suppressed type I collagen gene expression as judged by reduced rates of protein synthesis, steady state levels of Proα 1(I) collagen mRNA and expression of Luc driven by Proa 1(I) collagen promoter in OA-treated cells. Co-transfection of Proα 1(I)-Luc with expression vectors containing PP2A, but not PPI, stimulated collagen promoter activity. These results strongly suggest that OA acts via PP2A-mediated dephosphorylation of an unidentified transcription factor(s) or cofactor(s) needed to activate Proαl(I) collagen promoter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-4919
    Keywords: interleukin-1β ; prostaglandin E2 ; ceramide ; cyclooxygen-1 ; cyclooxygenase-2 ; cytosolic phospholipase A2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Interleukin-1β (IL-1) is a potent inducer of prostaglandin E2 (PGE2) synthesis. We previously showed that ceramide accumulates in fibroblasts treated with IL-1 and that it enhances IL-1-induced PGE2 production. The present study was undertaken to determine the mechanism(s) by which ceramide and IL-1 interact to enhance PGE2 production by examining their respective effects on the rate-limiting enzymes in PGE2 synthesis, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and cytosolic phospholipase A2 (cPLA2). IL-1-induced PGE2 synthesis required ω8 h even though COX-1 was constitutively expressed (both mRNA and protein) and enzymatically active in untreated cells. Conversely, COX-2 mRNA was barely detectable in untreated cells but within 2 h, ceramide or IL-1 alone induced a 5 and 20 fold increase in COX-2 mRNA, respectively. However, IL-1 induced COX-2 protein synthesis was only detectable 6-7 h after maximal COX-2 mRNA induction; COX-2 protein accumulation was not induced by ceramide alone. Ceramide however, reduced the length of time required for IL- 1 to induce COX-2 protein accumulation and increased COX-2 protein accumulation. IL-1 induced a 15 fold increase in COX-1 mRNA including an alternatively spliced form of COX-1. IL-1, but not ceramide induced cPLA2 mRNA and protein expression which corresponded with the initiation of PGE2 synthesis. These observations indicate that, (1) while either ceramide or IL-1 rapidly induced COX-2 mRNA, COX-2 protein only accumulated in IL- 1 treated cells after a delay of 6-7 h, (2) IL-1-induced PGE2 synthesis required both COX-2 and cPLA2 protein synthesis and, (3) ceramide enhanced (temporally and quantitatively) IL-1-induced COX-2 protein accumulation resulting in enhanced PGE2 production.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-4919
    Keywords: ribosomal proteins ; Msx1 ; cell cycle ; MyoD
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Murine myoblast cell lines stably transfected with expression vectors containing homeobox Msx1 cDNA in sense (F31-c) or antisense (F3R1) orientation have contrasting phenotypes. F3R1 cells readily differentiate in medium containing low serum whereas F31-c cells fail to differentiate under these conditions. The mechanism by which exogenous overexpression of Msx1 leads to the altered phenotype of F31-c cells and the downstream targets of Msx1 are unknown. Using the method of differential display, we have identified four cDNAs that represent transcripts up-regulated in F31-c. Two of these cDNAs are homologous to ribosomal proteins S23 and S24 while the third has homology to sequences in the murine Tcp-1 gene. A fourth cDNA does not have appreciable homology to cDNA sequences deposited in the NIH GenBank. Since withdrawal from the cell cycle and enhanced expression of MyoD commonly precede differentiation of myoblasts into myotubes, we also examined regulation of the major cell cycle proteins as well as MyoD by Western blot analysis. We show that the levels of Cdks 2, 4 and 6, cyclins A and D, and the Cdk inhibitor p27 in both proliferating and serum-starved F31-c cells were similar to those in F3R1. Finally, although MyoD protein levels increased in both cell types after 72 h incubation in serum depleted medium, the levels of MyoD in serum-starved F31-c cells were 2-4 fold lower. We postulate that the reduced amount of MyoD is sufficient to permit reversible withdrawal of F31-c cells from the cell cycle, but is inadequate to permit myogenesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...