Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The major peroxidase of barley grain (BP 1) has enzymatic and spectroscopic properties that are very differeant from those of other known plant peroxidases (EC 1.11.1.7) and can therefore contribute to the understanding of the many physiological functions ascribed to these enzymes. To study the structure-function relationships of this unique model peroxidase, large-scale and Jaboratory-scale purifications have been developed. The two batches of pure BP 1 obtained were identical in their enzymatic and spectral properties, and confirmed that BP 1 is different from the prototypical horseradish peroxidase isoenzyme C (HRP C). However, when measuring the specific activity of BP 1 at pH 4.0 in the presence of 1 mM CaCl2, the enzyme was as competent as HRP C at neutral pH towards a variety of substrates (mM mg−1 min−1): coniferyl alcohol (930±48), caffeic acid (795±53), ABTS (2,2′-azino-di-[3-ethyl-benzothiazoline-(6)-sulfonic acid]) (840±47), ferulic acid (415±20), p-coumaric acid (325±12), and guaiacol (58±3). The absorption spectrum of BP 1 is blue-shifted compared to that of HRP C with a Soret maximum of 399–402 nm, depending on pH. The prosthetic group was shown to be iron-protoporphyrin IX, which is characteristic of plant peroxidases. BP 1 is stable from pH 3 to 11, indicating that its unusual spectral characteristics do not result from enzyme instability. The thermostability is also normal with a melting temperature of 75°C at pH 6.6, and 67°C at pH 4.0 and 8.3. It is clear that the unusual properties of BP 1 are genuine, and reflect a novel regulation of plant peroxidase function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 18 (1992), S. 423-427 
    ISSN: 1573-5028
    Keywords: Hordeum vulgare L. ; CM protein ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The primary structure of the insect α-amylase inhibitor CMa of barley seeds was deduced from a full-length cDNA clone pc43F6. Analysis of RNA from barley endosperm shows high levels 15 and 20 days after flowering. The cDNA predicts an amino acid sequence of 119 residues preceded by a signal peptide of 25 amino acids. Ala and Leu account for 55% of the signal peptide. CMa is 60–85% identical with α-amylase inhibitors of wheat, but shows less than 50% identity to trypsin inhibitors of barley and wheat. The 10 Cys residues are located in identical positions compared to the cereal inhibitor family with a Pro-X-Cys motif present in all.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: carboxy-terminal processing ; glycosylation ; Hordeum vulgare L. ; Prx locus ; RFLP ; signal peptide ; targeting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The major peroxidase of barley seed BP 1 was characterized. Previous studies showed a low carbohydrate content, low specific activity and tissue-specific expression, and suggested that this basic peroxidase could be particularly useful in the elucidation of the structure-function relationship and in the study of the biological roles of plant peroxidases (S.K. Rasmussen, K.G. Welinder and J. Hejgaard (1991) Plant Mol Biol 16: 317–327). A cDNA library was prepared from mRNA isolated from seeds 15 days after flowering. Full-length clones were obtained and showed 3′ end length variants, a G+C content of 69% in the translated region, a 90% G or C preference in the wobble position of the codons and a typical signal peptide sequence. N-terminal amino acid sequencing and sequence analysis of tryptic peptides verified 98% of the sequence of the mature BP 1 which contains 309 amino acid residues. BP 1 is the first characterized plant peroxidase which is not blocked by pyroglutamate. BP 1 polymorphism was observed. BP 1 is less than 50% identical to other plant peroxidases which, taken together with its developmentally dependent expression in the endosperm 15–20 days after flowering, suggests a unique biological role of this enzyme. The barley peroxidase is processed at the C-terminus and might be targeted to the vacuole. The single site of glycosylation is located near the C-terminus in the N-glycosylation sequon -Asn-Cys-Ser- in which Cys forms part of a disulphide bridge. The major glycan is a typical plant modified-type structure, Manα1-6(Xylβ1-2)Manβ1-4GlcNAcβ1-4(Fucα1-3)GlcNAc. The BP 1 gene was RFLP-mapped on barley chromosome 3, and we propose Prx5 as the name for this new peroxidase locus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 16 (1991), S. 317-327 
    ISSN: 1573-5028
    Keywords: amino acid sequence ; carboxy-terminal processing ; cationic peroxidase ; glycosylation ; Hordeum vulgare L. ; tissue-specific expression ; λgt11 expression library
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A barley peroxidase (BP 1) of pI ca. 8.5 and M r 37000 has been purified from mature barley grains. Using antibodies towards peroxidase BP 1, a cDNA clone (pcR7) was isolated from a cDNA expression library. The nucleotide sequence of pcR7 gave a derived amino acid sequence identical to the 158 C-terminal amino acid residues of mature BP 1. The clone pcR7 encodes an additional C-terminal sequence of 22 residues, which apparently are removed during processing. BP 1 is less than 50% identical to other sequenced plant peroxidases. Analyses of RNA and protein from aleurone, endosperm and embryo tissue showed maximal expression 15 days after flowering, and high levels were found only in the endosperm. BP 1 was not expressed in the leaves.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 30 (1996), S. 673-677 
    ISSN: 1573-5028
    Keywords: cDNA sequence ; chymotrypsin inhibitor ; histidine-tag ; protein Z ; serpin ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs to the subfamily of protein Z-type serpins and the amino acid sequence is 70% identical with the barley serpins BSZ4 and BSZx and 27–33% identical with human serpins such as α1-proteinase inhibitor, antithrombin III, and plasminogen activator inhibitor. The cDNA was subcloned in the pET3d expression vector, equipped with a histidine affinity tag at the N-terminus and expressed in Escherichia coli BL(21) DE3 pLysS. Recombinant WSZ1 from the soluble fraction was partially purified on Ni-NTA agarose and MonoQ columns and shown to form SDS-stable complexes with α-chymotrypsin. Southern blots and amino acid sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-5028
    Keywords: dbEST ; elongation factor EF-1α ; peroxidase active site ; peroxidase structure ; signal peptide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract cDNA clones encoding two new Arabidopsis thaliana peroxidases, ATP1a and ATP 2a, have been identified by searching the Arabidopsisdatabase of expressed sequence tags (dbEST). They represent a novelbranch of hitherto uncharacterized plant peroxidases which is only 35%identical in amino acid sequence to the well characterized group ofbasic plant peroxidases represented by the horseradish (Armoraciarusticana/) isoperoxidases HRP C, HRP E5 and thesimilarArabidopsis isoperoxidases ATP Ca, ATP Cb, and ATP Ea. However ATP 1ais 87% identical in amino acid sequence to a peroxidase encoded by anmRNA isolated from cotton (Gossypium hirsutum). As cotton and Arabidopsis belong to rather diverse families (Malvaceae andCrucifereae, respectively), in contrast with Arabidopsis andhorseradish (both Crucifereae), the high degree of sequence identityindicates that this novel type of peroxidase, albeit of unknownfunction, is likely to be widespread in plant species. The atp 1 and atp2 types of cDNA sequences were the most redundant among the 28 differentisoperoxidases identified among about 200 peroxidase encoding ESTs.Interestingly, 8 out of totally 38 EST sequences coding for ATP 1 showedthree identical nucleotide substitutions. This variant form isdesignated ATP 1b. Similarly, six out of totally 16 EST sequences codingfor ATP 2 showed a number of deletions and nucleotide changes. Thisvariant form is desigated ATP 2b.The selected EST clones are full-length and contain coding regions of993 nucleotides for atp 1a, and 984 nucleotides for atp 2a. Theseregions show 61% DNA sequence identity. The predicted mature proteinsATP 1a, and ATP 2a are 57% identical in sequence and contain thestructurally and functionally important residues, characteristic of theplant peroxidase superfamily. However, they do show two differences ofimportance to peroxidase catalysis: (1) the asparagine residue linkedwith the active site distal histidine via hydrogen bonding is absent;(2) an N-glycosylation site is located right at the entrance to the hemechannel.The reverse transcriptase polymerase chain reaction (RT-PCR) was used toidentify mRNAs coding for ATP 1a/b and ATP 2a/b in germinating seeds,seedlings, roots, leaves, stems, flowers and cell suspension cultureusing elongation factor 1α (EF-1α) for the first time as apositive control. Both mRNAs were transcribed at levels comparable toEF-1α in all plant tissues investigated which were more thantwo days old, and in cell suspension culture. In addition, the mRNAcoding for ATP 1a/b was found in two day old germinating seeds. Theabundant transcription of ATP 1a/b and ATP 2a/b is in line with theirmany entries in dbEST, and indicates essential roles for these novelperoxidases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1572-9788
    Keywords: heterologous protein accumulation ; phytate phosphorus digestibility ; phytase ; phytic acid ; transformation ; Triticum aestivum L.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The Aspergillus niger phytase-encoding gene (phyA) has been constitutively expressed in wheat. Transgenic wheat lines were generated by microprojectile bombardment of immature embryos, using the bar-Bialaphos selection system. The bar and the phyA gene expression were controlled by the maize ubiquitin-1 promoter. To ensure secretion and glycosylation of the microbial phytase, an expression cassette was designed (Ubi-SP-Phy) where an α-amylase signal peptide sequence was inserted between the promoter and the phytase coding region. A similar cassette was constructed without the signal peptide sequence (Ubi-Phy). Five lines of fertile wheat transformed with the Ubi-SP-Phy were generated and two lines with the Ubi-Phy construct. The inheritance of the phyA gene was monitored through three generations. Western blotting of leaf and seed derived protein revealed the presence of an immunoreacting polypeptide of the size expected for the Aspergillus phytase. Up to 25 days after pollination, the heterologous phytase was exclusively present in the pericarp-seed coat-aleurone fraction. Thereafter, it accumulated in the endosperm in amounts exceeding that found in the seed coat and aleurone. The phyA mRNA and derived protein could at no stage be detected in the embryo. The Ubi-SP-Phy transgenic seeds exhibited up to 4-fold increase of phytase activity while up to 56% increase was found in Ubi-Phy plants. It is concluded that a functional Aspergillus phytase can be produced in significant amounts in wheat grains. This may be of relevance for improving the phytate-phosphorus digestibility when wheat grains are used for non-ruminant animal feed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Euphytica 114 (2000), S. 87-91 
    ISSN: 1573-5060
    Keywords: Angelica ; Bupleurum ; intergenic transcribed sequences ; Peucedanum ; phylogeny ; RAPD ; Umbelliferae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The internal transcribed spacers ITS1 and ITS2 in the18S-5.8S-26S rDNA repeat units were amplified and cloned from Angelica gigas Nakai, Angelica acutiloba (Siebold & Zucc.) Kitagawa, A. dahurica Maxim, Angelica decursiva (Miq.) Franch. & Savat, Bupleurum falcatum L. and Peucedanum japonicum Thunb. Sequence analyses showed that ITS1 is approx. 215 bp, the 5.8S gene is 162 bp and the ITS2 approx. 221 bp in all six species. The sequences are deposited at the EMBL Nucleotide Database. By including these new sequences in the Apiaceae phylogenetic tree, a third branch consisting of P. japonicum, A. gigas, P. decursivum and A. decursiva is added to theAngelica clade. Peucedanum does not forma distinct branch. The sequence obtained from Angelica dahurica collected in S. Korea is identical to that reported for the same species originating from China. A Bupleurum clade of three species was added to the tree showing closer relationship to theDaucus Laserpitium clade than the Angelica clade. RAPD analysis of all six species showed that the 10-base primer OPC-17 only, out of the20 Kit-C primers from Operon gave polymorphic banding patterns.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...