Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The tritiated antagonist SCH23390 was used to identify dopamine D1 receptors in the cerebral cortex and neostriatum. The kinetic properties of binding were investigated in parallel experiments with membrane preparations from both tissues. The densities of receptors (Bmax) and the dissociation constants (KD) were determined from saturation curves, and the specificity of binding verified in competition experiments using agonists and antagonists. The cortical D1 receptor displays the same pharmacological selectivity (including stereospecificity) and kinetic properties as the neostriatal D1 receptor. From both the dissociation kinetics by dilution and the competition curves, it could be established that there is an heterogeneity of binding, probably due to high- and low-affinity states. Endogenous dopamine, 4-hydroxy-3-methoxyphenylacetic acid, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine contents, as well as D1 receptor distribution, were measured for the neostriatum and four localized cortical areas: anterior cingulate. primary somatosensory, primary visual, and piriform-entorhinal. For the regions examined, the distribution of D1 receptors is heterogeneous, but correlates very well (r 〉 0.98) with the endogenous levels of dopamine and its major metabolites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Four weeks following portacaval anastomosis (PCA) in the rat, severe liver atrophy, sustained hyperammonemia, and increased plasma and brain tryptophan are observed. Administration of ammonium acetate (NH4Ac) to rats with PCA precipitates severe signs of hepatic encephalopathy (HE) (loss of righting reflex progressing to loss of consciousness and ultimately deep coma). To evaluate the relationship between the deterioration of neurological status in HE and serotonin (5-HT) metabolism, the levels of 5-HT, its precursor 5-hydroxytryptophan, and its major metabolite 5-hydroxyindole-3-acetic acid (5-HIAA) were measured by HPLC with ion-pairing and electrochemical detection in three well-defined areas of the cerebral cortex: anterior cingulate, piriform and entorhinal, and frontoparietal; as well as in the caudateputamen, the raphe nuclei, and the locus ceruleus in rats with PCA at different stages of HE, before and after injection of NH4Ac, as well as in sham-operated controls. The results demonstrate increased 5-HIAA/5-HT ratios after PCA and NH4Ac loading, suggesting increased 5-HT turnover in the brains of these animals. However, these changes do not appear to be related to the precipitation of coma as no significant difference in 5-HT turnover was observed between precoma and coma stages of HE. Increased 5-HT turnover in brain of shunted rats may be related to early symptoms of HE such as altered sleep patterns and disorders of motor coordination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The amino acid γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in brain, and GABAergic neurons have been proposed to play a major role in basal ganglia physiology. In the neostriatum (caudate putamen), medium-sized aspiny interneurons, as well as neostriatal output neurons that project to several brain regions, use GABA as their neurotransmitter. Dopamine fibers arising from the substantia nigra represent a major input to the neostriatum where, besides their classic neurotransmitter role, they are seemingly involved in the regulation of amino acid neurotransmitter release. To further characterize the nature of some of the amino acid/dopamine interactions, selective dopaminergic deafferentations were produced in neonatal rats (3 days postnatal) by intraventricular administration of the neurotoxin 6-hydroxydopamine (6-OHDA); the noradrenergic neurons were protected by prior administration of desmethylimipramine. After a 3-month survival, levels of catecholamines, indoleamines, and amino acids were determined in cingulate cortex, thalamus, and neostriatum. In addition, GABAA receptors were measured in membrane preparations from these three regions, using the specific agonist [3H]muscimol. In the 6-hydroxydopamine-lesioned rats, levels of dopamine and its metabolites homovanillic acid, 3,4-dihydroxyphenylacetic acid, and 3-methoxytyramine were decreased, as expected, in cortex and neostriatum, but remained unmodified in thalamus. In all three regions, serotonin content was increased; its metabolite, 5-hydroxyindole-3-acetic acid, was also elevated, but only in cortex and neostriatum. The levels of GABA were increased in neostriatum and thalamus, but remained unmodified in cortex. Glycine was increased in all three regions examined. There were also increases of phosphatylethanolamine and serine in thalamus, and of aspartic acid and alanine in neostriatum. The density of GABAA binding sites was increased in neostriatum, but remained unchanged in cortex and thalamus. The changes in amino acid levels and [3H]muscimol binding sites induced by a neonatal 6-hydroxydopamine treatment differ from those found after similar lesions in adult animals, possibly because of the plastic and synaptic rearrangements that can still occur during early postnatal development. The present results also demonstrate that adaptations occur in response to a dopaminergic deafferentation at an early age and that these exhibit a regional specificity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The agents p-chlorophenylalanine (PCPA) and p-chloroamphetamine (PCA) deplete brain serotonin (5-HT) levels by two different mechanisms; PCPA inhibits the enzyme tryptophan hydroxylase, whereas PCA has a neurotoxic action on certain 5-HT neurons. The parameters of [3H]paroxetine binding to homogenates prepared from the cerebral cortex of rats treated with PCPA, PCA, or saline vehicle were investigated. The tissue concentrations of 5-HT and 5-hydroxyindole-3-acetic acid (5-HIAA) were also determined by HPLC in the same brain samples. After PCPA treatment, neither the maximum binding capacity (Bmax) nor the dissociation constant (KD) of [3H]paroxetine for the 5-HT uptake recognition site differed from controls despite a substantial reduction in the concentration of 5-HT and 5-HIAA. In contrast, significant changes in both the Bmax and KD values were observed in the cerebral cortex of rats treated with PCA. Furthermore, [3H]paroxetine binding and tissue concentrations of 5-HT and 5-HIAA were measured in the following different regions of the rat brain: cingulate, parietal, and visual cortical areas; dorsal and ventral hippocampus; rostral and caudal halves of neostriatum; ventral mesencephalic tegmentum; and midbrain raphe nuclei region after administration of PCPA, PCA, or saline vehicle. There was an excellent correlation between regional 5-HT levels and specific [3H]paroxetine binding in control and PCA-treated rats although this correlation was lost after PCPA treatment. Under these conditions, the 5-HT innervation remains unchanged whereas the concentration of 5-HT and 5-HIAA is greatly reduced. Thus, [3H]paroxetine binding appears to provide a reliable marker of 5-HT innervation density within the mammalian CNS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 52 (1989), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Receptor binding studies were performed in cerebral cortex (CTX) and neostriatum (CPU; caudate–putamen) using the dopamine D1 antagonist [3H]SCH23390. Because receptors are of protein nature, we examined the role of disulfide bonds (–SS–) and sulfhydryl groups (–SH) in the specific binding of [3H]SCH23390. Furthermore, membrane preparations contain a certain amount of lipid, so that treatments with –SH and –SS– reagents could determine whether the fixation of the radioligand was to protein or to the lipid moiety. Pretreatment of CTX and CPU membranes with dithioerythritol, l-dithiothreitol, or 5,5′-dithiobis(2-nitro-benzoic acid), as well as with the alkylating agent N-ethyl-maleimide, produced dose-dependent decreases of specific [3H]SCH23390 binding in membrane preparations from both tissues. These changes were not reversible after up to two washes, but could be prevented in part if the treatments were performed in the presence of dopamine. Additional protection experiments were conducted with (+)- and (−)-butaclamol, as well as with (+)- and (−)-SKF38393. A series of saturation experiments (with pretreated membranes in the absence of reactives) demonstrated that the alkylation of –SS– groups reduced specific [3H]SCH23390 binding mainly through an affinity change, but l-dithiothreitol and 5,5-dithiobis(2-nitrobenzoic acid) decreased the number of binding sites. The affinity of the receptor to agonists was examined with the two enantiomers of SKF38393; the inhibition curves showed that residual binding was not affected and stereospecificity was conserved. The present results provide evidence for the participation of both –SS– and –SH groups in the recognition site of the dopamine D1 receptor in both the CTX and the CPU.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Measurements of serotonin (5-HT), dopamine (DA), andnoradrenaline, and of 5-HT and DA metabolites, were obtained by HPLC from 16brain regions and the spinal cord of 5-HT1A or 5-HT1Bknockout and wild-type mice of the 129/Sv strain. In 5-HT1Aknockouts, 5-HT concentrations were unchanged throughout, but levels of 5-HTmetabolites were higher than those of the wild type in dorsal/medial raphenuclei, olfactory bulb, substantia nigra, and locus coeruleus. This was takenas an indication of increased 5-HT turnover, reflecting an augmented basalactivity of midbrain raphe neurons and consequent increase in theirsomatodendritic and axon terminal release of 5-HT. It provided a likelyexplanation for the increased anxious-like behavior observed in5-HT1A knockout mice. Concomitant increases in DA content and/or DAturnover were interpreted as the result of a disinhibition of DA, whereasincreases in noradrenaline concentration in some territories of projection ofthe locus coeruleus could reflect a diminished activity of its neurons. In5-HT1B knockouts, 5-HT concentrations were lower than those of thewild type in nucleus accumbens, locus coeruleus, spinal cord, and probablyalso several other territories of 5-HT innervation. A decrease in DA,associated with increased DA turnover, was measured in nucleus accumbens.These changes in 5-HT and DA metabolism were consistent with the increasedaggressiveness and the supersensitivity to cocaine reported in5-HT1B knockout mice. Thus, markedly different alterations in CNSmonoamine metabolism may contribute to the opposite behavioral phenotypes ofthese two knockouts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 70 (1998), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In rat, the neonatal destruction of nigrostriatal dopamine (DA) neurons by intracerebral administration of 6-hydroxydopamine entails dramatic changes in serotonin (5-hydroxytryptamine, 5-HT) as well as DA function. Most striking is the 5-HT hyperinnervation of the adult neostriatum, associated with increases in density of various 5-HT receptor subtypes and enhanced neuronal responsiveness to the iontophoretic application of 5-HT and its 5-HT1B/2C and 5-HT2A/2C receptor agonists, m-chlorophenylpiperazine and iododimethoxyphenylaminopropane. The topographical distribution of these changes is consistent with up-regulation and/or increased production and transport of 5-HT1B and 5-HT2A receptors by the neostriatal projection neurons, as confirmed for the 5-HT2A receptor in a recent in situ hybridization study. It is interesting that this study has also shown that increases in both 5-HT2A binding and mRNA level were abolished by chronic pretreatment with the DA agonists, apomorphine and SKF 38393, suggesting a regulatory influence of DA in the expression of this 5-HT receptor. D1 receptor binding is known to be slightly reduced in the rostral neostriatum of these rats, a down-regulation apparently imputable to a reduced rate of synthesis of the receptor. In contrast, D2 receptor binding is increased throughout the DA-denervated and 5-HT-hyperinnervated neostriatum, perhaps due to some post-transcriptional modifications. Stereotyped and motor behaviors induced by systemic treatment with D1 and D2 agonists are markedly enhanced in these rats (behavioral supersensitivity), although priming is commonly required to unmask a latent D1 supersensitivity. In the case of oral activity, however, overt behavioral supersensitivity is induced by D1 as well as D2 agonists. Moreover, there is overt supersensitivity of oral activity in response to the 5-HT receptor agonist m-chlorophenylpiperazine, which is presumably imputable to 5-HT2C receptors and may be demonstrated even in the absence of supersensitivity to D1 receptor agonist. 5-HT adaptations, therefore, seem to play a role not only in the abnormal spontaneous behavior, but also in the behavioral supersensitivity to 5-HT as well as DA receptor agonists in these rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: 5-HT1A knockout (KO) mice display an anxious-like phenotype, whereas 5-HT1B KOs are over-aggressive. To identify serotoninergic correlates of these altered behaviors, autoradiographic measurements of 5-HT1A and 5-HT1B serotonin (5-HT) receptors and transporter (5-HTT) were obtained using the radioligands [3H]8-OH-DPAT, [125I]cyanopindolol and [3H]citalopram, respectively. By comparison to wild-type, density of 5-HT1B receptors was unchanged throughout brain in 5-HT1A KOs, and that of 5-HT1A receptors in 5-HT1B KOs. In contrast, decreases in density of 5-HTT binding were measured in several brain regions of both genotypes. Moreover, 5-HTT binding density was significantly increased in the amygdalo-hippocampal nucleus and ventral hippocampus of the 5-HT1B KOs. Measurements of 5-HT axon length and number of axon varicosities by quantitative 5-HT immunocytochemistry revealed proportional increases in the density of 5-HT innervation in these two regions of 5-HT1B KOs, whereas none of the decreases in 5-HTT binding sites were associated with any such changes. Several conclusions could be drawn from these results: (i) 5-HT1B receptors do not adapt in 5-HT1A KOs, nor do 5-HT1A receptors in 5-HT1B KOs. (ii) 5-HTT is down-regulated in several brain regions of 5-HT1A and 5-HT1B KO mice. (iii) This down-regulation could contribute to the anxious-like phenotype of the 5-HT1A KOs, by reducing 5-HT clearance in several territories of 5-HT innervation. (iv) The 5-HT hyperinnervation in the amygdalo-hippocampal nucleus and ventral hippocampus of 5-HT1B KOs could play a role in their increased aggressiveness, and might also explain their better performance in some cognitive tests. (v) These increases in density of 5-HT innervation provide the first evidence for a negative control of 5-HT neuron growth mediated by 5-HT1B receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 757 (1995), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1912
    Keywords: Dopamine D1 receptors ; Rabbit ; Cerebral cortex ; Caudate ; Putamen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The binding characteristics of the novel benzazepine compound SCH23390 were studied using membrane preparations from rabbit cerebral cortex (CTX) and neostriatum (CPU; caudate putamen). The association kinetics of [3H]SCH23390 to membranes from CTX and CPU were rapid, while the dissociation kinetics were extremely slow and only around 40–60% of the binding was displaced two hours after the addition of either S(+)-butaclamol or 30 volumes of buffer. The saturation curves revealed that [3HISCH23390 bound with high affinity in both tissues, with densities of 133 fmol/mg protein for CTX (Kd 25°C = 0.31 nM) and 664 fmol/mg protein for CPU (Kd = 0.13 nM). The specificity of binding to the cortical D1 receptor was verified in competition experiments with a variety of dopaminergic agents. The rank order of potency of these compounds was consistent with the pharmacology of the dopaminergic D1 site. All competition curves were better fitted to a one-site model with Hill coefficients around one, indicating that [3H]SCH23390 was binding to a single cortical site. The stereoselectivity of the cortical [3H]SCH23390 binding site could be demonstrated by the use of enantiomer pairs of dopaminergic drugs. This study provides compelling evidence that [3H]SCH23390 binds to dopamine D1 receptors in the neostriatum and cerebral cortex of the rabbit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...