Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 5258-5266 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A fixed volume of liquid is placed on a horizontal disk spinning at a constant angular speed. The liquid forms a film that thins continuously due to centrifugal drainage and evaporation or thins to a finite thickness when surface absorption counterbalances drainage. A nonlinear evolution equation describing the shape of the film interface as a function of space and time is derived, and its stability is examined using linear theory. When there is either no mass transfer or there is evaporation from the film surface, infinitesimal disturbances decay for small wave numbers and are transiently stable for larger wave numbers. When absorption is present at the free surface, the film exhibits three different domains of stability: disturbances of small wave numbers decay, disturbances of intermediate wave numbers grow transiently, and those of larger wave numbers grow exponentially.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 70 (1991), S. 5267-5277 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A thin liquid film drains radially off the surface of a horizontal, rotating substrate. Evaporation of solvent from the film increases the fluid viscosity and reduces the radial outflow. Governing equations are developed for the shape of the film interface as a function of space and time, as well as the axisymmetric solvent-concentration distribution, for both unit order and large Peclet numbers. The numerical solution of these equations elucidates how a spinning film with either a corrugated or a flat free surface evolves over time in the presence of a time-varying concentration (and viscosity) field. A correlation for the final film thickness in terms of the physical variables of the system is deduced from the governing equations, the result of which shows good agreement to published experimental results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : American Institute of Physics (AIP)
    Physics of Fluids 2 (1990), S. 2066-2067 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The stability of a heated liquid film subjected to surface tension and van der Waals forces is explored in the case where the fluid viscosity is temperature dependent. The limits of very large and very small Biot numbers are examined, and in these cases it is found that the evolution equation can be rescaled to return the model equation developed by Williams and Davis [J. Colloid Interface Sci. 90, 220 (1982)] for an isothermal film. The effect of variable viscosity is deduced and is found to reduce the rupture time of the film relative to the constant-viscosity result.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...