Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 18 (1991), S. 161-170 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract The olivine-beta phase transformation in Co2SiO4 has been studied in a large-volume high-pressure apparatus (USSA-2000). The experimental conditions straddle the univariant phase boundaries due to the presence of a substantial temperature gradient (150–200° C over the 3-mm length of the sample). At conditions close to equilibrium, the transformation mechanism is one of limited nucleation with rapid growth of large crystals of the beta phase. Transmission electron microscopy (TEM) analysis shows that the cation stacking faults in Co2SiO4-spinel are identical to those seen in numerous spinels. The 010 faults in beta-Co2SiO4 are found to be identical to those seen in beta-(Mg,Fe)2SiO4 found in shocked veins in meteorites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 15 (1988), S. 498-506 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract An experiment conducted in a 2000-ton uniaxial split-sphere apparatus (USSA-2000) utilizes large sample volume and a substantial temperature gradient to synthesize intergrowths of the olivine and spinel polymorphs of Co2SiO4. The olivine starting material consists of a finegrained fraction (〈20μm) which records the stable polymorphs along the length of the sample plus large olivine grains (100–500 μm) which help decipher the mechanism of the phase transformation. At conditions near equilibrium, the olivine-spinel transformation in the large grains occurs by inward growth of a few large single crystals of spinel nucleated on the surfaces of the olivine. The overall rate of transformation is governed by the mobility of the interphase boundary, whose morphology is crystallographically controlled by the spinel. No renucleation of spinel is observed in the host olivine crystal, even in the region immediately adjacent to the olivine/spinel interface; analysis of this region with transmission electron microscopy reveals an extremely high density of dislocations induced by plastic flow accommodating the volume change associated with the phase transformation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...