Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We used a catecholaminergic neuron-like cell line (CATH.a cells) as a model system to investigate the likelihood that pituitary adenylate cyclase-activating polypeptide (PACAP) may participate in the regulation of specific gene expression in catecholaminergic neurons. Analysis by reverse transcriptase-PCR amplification revealed the presence in these cells of type I PACAP receptors, with a short isoform, together with a heavier so-called Hop splice variant. PACAP38 and PACAP27 enhanced, in a dose-dependent manner, both cyclic AMP formation and phosphoinositide breakdown, with EC50 values of, respectively, 0.6 × 10−10 and 2 × 10−9M. These peptides, in addition, also elevated [Ca2+]i by mobilizing intracellular calcium pools. Vasoactive intestinal peptide (VIP) was ∼1,000-fold less potent in stimulating cyclic AMP (with EC50 = 2 × 10−7M) and failed to change the turnover of phosphoinositides and to alter [Ca2+]i. Both forms of PACAP, as well as forskolin, stimulated transcriptional induction of tyrosine hydroxylase (TH) and c-fos promoters fused to a chloramphenicol acetyltransferase (CAT) reporter gene in transiently transfected cells (p 〈 0.01 vs. controls). Induction of CAT activity linked to both TH and c-fos promoters was obliterated upon coexpression of a dominant inhibitory mutant (Mt-RAB) of cyclic AMP-dependent protein kinase. We conclude that CATH.a cells do express functional PACAP type I receptors, the activation of which impinges on TH and c-fos transcription according to a process that is primarily dependent on the cyclic AMP-PKA pathway.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Amyotrophic lateral sclerosis (ALS) is a fatal, paralytic disorder that primarily affects motoneurons. By combining physiological and morphological approaches, we examined the effect of a murine superoxide dismutase 1 (SOD1) mutation (G86R), which induces neurological disorders resembling human familial ALS (FALS), on the arginine vasopressin (AVP) hypothalamo-neurohypophysial axis, an unmyelinated tract poor in neurofilaments. First, we observed that G86R mice progressively consumed more water than wild-type littermates. Furthermore, levels of plasma AVP and neurohypophysial AVP content were decreased in the SOD1 mutant mice, whereas the amount of hypothalamic AVP increased in an age-dependent manner. However, hypothalamic AVP mRNA levels were not significantly modified in these animals. At the ultrastructural level, we found that the neurohypophysis of G86R mice had a decreased number of neurosecretory axons. Conversely, the presence of large axon swellings was more pronounced in the SOD1 mutant mice. In addition, the size of neurosecretory granules was higher in G86R than in wild-type animals. All these findings strongly suggest that the FALS-associated SOD1 mutation injures the hypothalamo-neurohypophysial axis by provoking early, progressive disturbances in the axonal transport of neurosecretory products from neuronal perikarya to nerve terminals. This blockade could ultimately result in degeneration of the tract, as proposed for the myelinated, neurofilament-enriched motor axons affected by ALS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The locus cœruleus is innervated by proopiomelanocortin (POMC)-derived peptide immunoreactive fibres. The biological effects of α melanocyte-stimulating hormone (αMSH) and β-endorphin on second messengers (cAMP, inositol phosphates) and gene transcription were studied in the locus cœruleus-derived cell line CATH.a. RT-PCR analysis revealed the presence of four MSH receptor subtypes (1, 3, 4 and 5). Activation of these receptors by diacetyl αMSH stimulated cAMP accumulation in a dose-dependent manner (EC50: 4 × 10–9m). Diacetyl αMSH stimulated transcription from reporter genes driven by the c-fos or tyrosine hydroxylase promoter. This effect was abolished when protein kinase A was inactivated with a dominant inhibitory mutant. RT-PCR analyses revealed the presence of δ-, but not μ-and κ-opioid receptor. Pharmacological analysis showed that β-endorphin (EC50: 2.5 × 10–8m), but not N-acetyl β-endorphin, antagonized the biological effect of diacetyl αMSH on cAMP production and gene transcription. Since N-acetylation regulates the biological activity of αMSH and β-endorphin in an opposite manner, we propose a model where the rate of secretion dictated by the bioelectric activity of the presynaptic neuron modulates POMC-derived peptide maturation and the resulting biological signal sensed by the postsynaptic plate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 680 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...