Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-1440
    Keywords: Cystic fibrosis ; Cl- channel ; K+ channel ; Na+ channel ; Respiratory tract ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract In most epithelia ion transport is tightly regulated. One major primary target of such regulation is the modulation of ion channels. The present brief review focuses on one specific example of ion channel regulation by the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a cAMP-regulated Cl- channel. Its defect leads to the variable clinical pictures of cystic fibrosis (CF), which today is understood as a primary defect of epithelial Cl- channels in a variety of tissues such as the respiratory tract, intestine, pancreas, skin, epididymis, fallopian tube, and others. Most recent findings suggest that CFTR also acts as a channel regulator. Three examples are discussed by which CFTR regulates other Cl- channels, K+ channels, and epithelial Na+ channels. From this perspective it is evident that CFTR may play a major role in the integration of cellular function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1440
    Keywords: Key words Cystic fibrosis ; Cl ; channel ; K+ channel ; Na+ channel ; Respiratory tract ; Colon
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Abstract: In most epithelia ion transport is tightly regulated. One major primary target of such regulation is the modulation of ion channels. The present brief review focuses on one specific example of ion channel regulation by the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR functions as a cAMP-regulated Cl–channel. Its defect leads to the variable clinical pictures of cystic fibrosis (CF), which today is understood as a primary defect of epithelial Cl–channels in a variety of tissues such as the respiratory tract, intestine, pancreas, skin, epididymis, fallopian tube, and others. Most recent findings suggest that CFTR also acts as a channel regulator. Three examples are discussed by which CFTR regulates other Cl–channels, K+ channels, and epithelial Na+ channels. From this perspective it is evident that CFTR may play a major role in the integration of cellular function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2013
    Keywords: Key words Cl ; secretion ; Carbachol ; K+ channel ; cAMP ; Exocrine secretion ; Non-selective cation channel ; Cl ; channel
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  We have previously shown that a new type of K+ channel, present in the basolateral membrane of the colonic crypt base (blm), is necessary for cAMP-activated Cl- secretion. Under basal conditions, and when stimulated by carbachol (CCH) alone, this channel is absent. In the present patch clamp-study we examined the ion channels present in the blm under cell-attached and in cell-excised conditions. In cell-attached recordings with NaCl-type solution in the pipette we measured activity of a K+ channel of 16 ± 0.3 pS (n = 168). The activity of this channel was sharply increased by CCH (0.1 mmol/l, n = 26). Reduction of extracellular Ca2+ to 0.1 mmol/l (n = 34) led to a reversible reduction of activity of this small channel (SKCa). It was also inactivated by forskolin (5 μmol/l, n = 38), whilst the K+ channel noise caused by the very small K+ channel increased. Activity of non-selective cation channels (NScat) was rarely observed immediately prior to the loss of attached basolateral patches and routinely in excised patches. The NScat, with a mean conductance of 49 ± 1.0 pS (n = 96), was Ca2+ activated and required 〉10 μmol/l Ca2+ (cytosolic side = cs). It was reversibly inhibited by ATP (〈1 mmol/l, n = 13) and by 3′,5-dichloro-diphenylamine-2-carboxylate (10–100 μmol/l, n = 5). SKCa was also Ca2+ dependent in excised inside-out basolateral patches. Its activity stayed almost unaltered down to 1 μmol/l (cs) and then fell sharply to almost zero at 0.1 μmol/l Ca2+ (cs, n = 12). SKCa was inhibited by Ba2+ (n = 31) and was charybdotoxin sensitive (1 nmol/l) in outside-out basolateral patches (n = 3). Measurements of the Ca2+ activity ([Ca2+]i) in these cells using fura-2 indicated that forskolin and depolarization, induced by an increase in bath K+ concentration to 30 mmol/l, reduced [Ca2+]i markedly (n = 8–10). Hyperpolarization had the opposite effect. The present data indicate that the blm of these cells contains a small-conductance Ca2+-sensitive K+ channel. This channel is activated promptly by very small increments in [Ca2+]i and is inactivated by a fall in [Ca2+]i induced by forskolin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-2013
    Keywords: Key words Cl ; secretion ; K+ channel ; cAMP ; Exocrine secretion ; Chromanol ; Colonic crypt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We have shown previously that secretagogues acting via the second messenger adenosine 3′,5′-cyclic monophosphate (cAMP) activate, besides their marked effect on the luminal Cl− conductance, a K+ conductance in the basolateral membrane of colonic crypt cells. This conductance is blocked by the chromanol 293B. This K+ conductance is examined here in more detail in cell-attached (c.a.) and cell-excised (c.e.) patch- clamp studies. Addition of forskolin (5 μmol/l) to the bath led to the activation of very small-conductance (probably 〈 3 pS) K+ channels in c.a. patches (n = 54). These channels were reversibly inhibited by the addition of 0.1 mmol/l of 293B to the bath (n = 21). Noise analysis revealed that these channels had fast kinetics and produced a Lorentzian noise component with a corner frequency ( f c) of 308 ± 10 Hz (n = 30). The current/voltage curves of this noise indicated that the underlying ion channels were K+ selective. 293B reduced the power density of the noise (S o) to 46 ± 8.7% of its control value and shifted f c from 291 ± 26 to 468 ± 54 Hz (n = 8). In c.e. patches from cells previously stimulated by forskolin, the same type of current persisted in 3 out of 18 experiments when the bath solution was a cytosolic-type solution without adenosine 5′-triphosphate (ATP) (CYT). In 15 experiments the addition of ATP (1 mmol/l) to CYT solution was necessary to induce or augment channel activity. In six experiments excision was performed into CYT + ATP solution and channel activity persisted. 293B exerted a reversible inhibitory effect. The channel activity was reduced by 5 mmol/l Ba2+ and was completely absent when K+ in the bath was replaced by Na+. These data suggest that forskolin activates a K+ channel of very small conductance which can be inhibited directly and reversibly by 293B.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...