Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0851
    Keywords: Bispecific antibodies ; Tumor-associated antigens ; Cell growth inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Bispecific antibodies of a new category, termed “antigen forks”, were constructed by crosslinking antibodies that recognized pairs of distinct tumor cell surface antigens. At concentrations of 1–100 nM, several such forks inhibited the growth of human tumor cell lines bearing both relevant antigens. The same cells were not inhibited by unconjugated component antibodies, and the active conjugates did not inhibit the growth of human cell lines that expressed lower levels of relevant antigens. The three most active antigen forks all contained monoclonal antibody 454A12, which recognizes human transferrin receptor. This antibody was conjugated respectively to antibodies 113F1 (against a tumor-associated glycoprotein complex), 317G5 (against a 42-kDa tumor-associated glycoprotein), or 520C9 (against the c-erbB-2 protooncogene product). The 317G5-454A12 fork strongly inhibited the HT-29 and SW948 human colorectal cancer cell lines, while the 113F1-454A12 fork was also effective against SW948. By designing forks against antigens of incompatible function that are co-expressed at high levels on tumor cells but not on normal tissues, it may be possible to generate reagents that inhibit tumor growth with enhanced selectivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0851
    Keywords: Key words: Bispecific antibodies – Tumor-associated antigens – Cell growth inhibition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Bispecific antibodies of a new category, termed “antigen forks”, were constructed by crosslinking antibodies that recognized pairs of distinct tumor cell surface antigens. At concentrations of 1 – 100 nM, several such forks inhibited the growth of human tumor cell lines bearing both relevant antigens. The same cells were not inhibited by unconjugated component antibodies, and the active conjugates did not inhibit the growth of human cell lines that expressed lower levels of relevant antigens. The three most active antigen forks all contained monoclonal antibody 454A12, which recognizes human transferrin receptor. This antibody was conjugated respectively to antibodies 113F1 (against a tumor-associated glycoprotein complex), 317G5 (against a 42-kDa tumor-associated glycoprotein), or 520C9 (against the c-erbB-2 protooncogene product). The 317G5-454A12 fork strongly inhibited the HT-29 and SW948 human colorectal cancer cell lines, while the 113F1-454A12 and 520C9-454A12 forks strongly inhibited the SK-BR-3 human breast cancer cell line and the 113F1-454A12 fork was also effective against SW948. By designing forks against antigens of incompatible function that are co-expressed at high levels on tumor cells but not on normal tissues, it may be possible to generate reagents that inhibit tumor growth with enhanced selectivity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0851
    Keywords: Key words Human neutrophil interactions ; Bispecific monoclonal antibodies ; Targeting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  2B1 is a bispecific murine monoclonal antibody (bsmAb) targeting the c-erbB-2 and CD16 (FcγRIII) antigens. c-erbB-2 is over-expressed by a variety of adenocarcinomas, and CD16, the low-affinity Fcγ receptor for aggregated immunoglobulins, is expressed by polymorphonuclear leukocytes (PMN), natural killer (NK) cells and differentiated mononuclear phagocytes. 2B1 potentiates the in vitro lysis of c-erbB-2 over-expressing tumors by NK cells and macrophages. In this report, the interactions between 2B1 and PMN were investigated to assess the impact of these associations on in vitro 2B1-promoted tumor cytotoxicity by human NK cells. The peak binding of 2B1 to PMN was observed at a concentration of 10 μg/ml 2B1. However, 2B1 rapidly dissociated from PMN in vitro at 37°C in non-equilibrium conditions. This dissociation was not caused by CD16 shedding. When PMN were labeled with 125I-2B1 and incubated at 37°C and the supernatants examined by HPLC analysis, the Fab regions of dissociated 2B1 were not complexed with shed CD16 extracellular domain. While most of the binding of 2B1 to PMN was solely attributable to Fab-directed binding to FcγRIII, PMN-associated 2B1 also bound through Fcγ-domain/FcγRII interactions. 2B1 did not promote in vitro PMN cytotoxicity against c-erbB-2-expressing SK-OV-3 tumor cells. When PMN were coincubated with peripheral blood lymphocytes, SK-OV-3 tumor and 2B1, the concentration of 2B1 required for maximal tumor lysis was lowered. Although PMN may serve as a significant competitive binding pool of systemically administered 2B1 in vivo, the therapeutic potential of the targeted cytotoxicity properties of this bsmAb should not be compromised.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0851
    Keywords: Key words Bispecific antibody ; c-erbB-2 ; CD16 ; Immunization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  The bispecific monoclonal antibody (bsmAb) 2B1, targeting the extracellular domain of c-erbB-2, the protein product of the HER-2/neu proto-oncogene, and FcγRIII (CD16), expressed by human natural killer cells, neutrophils and differentiated monocytes, mediates the specific cytotoxic activity of these effector cells to tumor cells. A group of 24 patients with c-erbB-2-overexpressing tumors were treated with intravenously administered 2B1 in a phase I clinical trial and followed after treatment to evaluate the diversity and extent of the 2B1-induced humoral immune responses. As expected, 17 of 24 patients developed human anti-(murine Ig) antibodies (HAMA) to whole 2B1 IgG in a range from 100 ng/ml to more than 50 000 ng/ml; 10 of these patients (42%) had strong (at least 1000 ng/ml) HAMA responses, some of which were still detectable at day 191. These responses were usually associated with similar reactivity to the F(ab′)2 fragments of the parental antibodies 520C9 (anti-c-erbB-2) and 3G8 (anti-CD16). We sought evidence of an idiotypic cascade induction, indicating a prolonged specific treatment-induced effect on at least one selected target of 2B1. Using competition-based enzyme-linked immunosorbent assays, specific anti-idiotypic antibodies (Ab2) were detectable against 520C9 in 11 patients and against 3G8 in 13 patients. Peak anti-idiotypic antibodies generally occurred 3–5 weeks from treatment initiation, with a downward trend thereafter. There was a statistically significant correlation among the induction of significant HAMA responses, anti-idiotypic antibody production and the development of antibodies to c-erbB-2. The anti-c-erbB-2 responses, which were distinct from anti-anti-idiotypic (Ab3) antibodies, were detected in the post-treatment sera of 6/16 patients examined. No obvious correlation could be made between the development of humoral immune responses, the dose received, and the clinical response. Future investigations involving 2B1 therapy will concentrate on investigating an association of these humoral responses to any c-erbB-2-specific cellular responses. Manipulations of 2B1 therapy effects that augment immunity to c-erbB-2 could provide additional avenues for immunotherapy with this and other bispecific antibodies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...