Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1749-7345
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: A generalized nitrogen budget was constructed to evaluate the potential role of mangrove sediments as a sink for dissolved inorganic nitrogen (DIN) in shrimp pond effluents. DIN concentrations were measured in pond effluents from three semi-intensive shrimp ponds along the Caribbean coast of Colombia between 1994–1995. Mean NH4+ concentrations in the discharge water for all farms were significantly higher (67 × 12 μg/L) than in the adjacent estuaries (33 × 8 μg/L). Average NH4+ concentrations in the pond discharge over all growout cycles were similar, representing an approximate doubling in relation to estuarine water concentrations. In contrast, NO2-+ NO3- concentrations were similar in both pond effluent and estuarine waters. Dissolved inorganic nitrogen loading of the ponds was similar. The estimated reduction of DIN in pond effluents by preliminary diversion of outflow to mangrove wetlands rather than directly to estuarine waters would be × 190 mg N/m2 per d. Based on this nitrogen loss and depending upon the enrichment rate, between 0.04 to 0.12 ha of mangrove forest is required to completely remove the DIN load from effluents produced by a 1-ha pond.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Key words Crab transport  ;  Rhizophora  ;  Litter fall  ;  Ucides occidentalis  ;  Detritus export
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The hypothesis that rates of litter turnover in mangroves are controlled by local geophysical processes such as tides has been studied at sites with mostly small tides (〈1 m) and minor crab consumption of leaf litter. Our study describes litter dynamics of three riverine mangrove sites (M1, M2, M3), inhabited by the mangrove crab Ucides occidentalis, located in a macrotidal (〉3 m) river-dominated tropical estuary in Ecuador (2.5°S latitude). There were statistical effects of site and depth on soil salinities, but all mean salinities were 〈17 g kg−1. Daily rates of leaf litter fall were higher in the rainy compared to the dry season, although no seasonal effects were observed for other components of litter fall. Annual total litter fall rates were significantly different among sites at 10.64, 6.47, and 7.87 Mg ha−1 year−1 for M1, M2, and M3, respectively. There were significant site (M3 〉 M2 〉 M1) and season (rainy 〉 dry) effects on leaf degradation, and both effects were related to differences in the initial nitrogen content of senescent leaves. Mean leaf litter standing crop among the sites ranged from 1.53 to 9.18 g m−2, but amounts were strongly seasonal with peak values during September in both years of our study (no significant year effect) at all three sites. Leaf turnover rates based on leaf fall estimates and litter standing crop were 10- to 20-fold higher than estimated from rates of leaf degradation, indicating the significant effect of leaf transport by tides and crabs. Field experiments demonstrated that the mangrove crab can remove daily additions of leaf material within 1 h at all three sites, except during August–October, when the crab is inactive on the forest floor. Even though there is seasonally elevated leaf accumulation on the forest floor during this time, leaf turnover rates are much higher than expected based on leaf degradation, demonstrating the importance of tidal export. This is the first description of how crabs influence litter dynamics in the New World tropics, and results are similar to higher rates of crab transport of leaf litter in the Old World tropics. Even in riverine mangroves with high geophysical energies, patterns of litter dynamics can be influenced by ecological processes such as crab transport.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5117
    Keywords: aquatic primary productivity ; fringe ; Terminos Lagoon ; Mexico
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Seasonal and spatial patterns of aquatic primary production were compared in a tidal creek (Estero Pargo) bordered by mangroves and open waters of Terminos Lagoon, Mexico. Comparisions were made during a 17-month period in 1990–91 that spanned dry, rainy, and storm or 'Norte' seasons. Annual net primary productivity was 478 g C m-2 yr-1 in the lagoon and 285 g C m-2 yr-1 in the tidal creek. In some months, there were significant differences in primary production between the two sites. In both areas, the highest productivity occurred in summer at the start of the rainy season (June 1991), and the lowest production occurred during the dry season from February to May. Aquatic primary production was lower during the dry season of 1991 in comparison to 1990, possibly related to unusually low precipitation during 1991. Seasonal changes in water column productivity were correlated to variations in light and precipitation. The effect of runoff from mangrove forests was assessed by serial additions of surface water from a fringe forest to bottle incubations of lagoon water. Small additions of mangrove water stimulated primary production in lagoon waters during all seasons. The net productivity was extremely sensitive to aliquot volume; small amounts (0.3 and 1.7% of total volume) were stimulatory, increasing rates by 〉 50% in 7 of 12 experiments. The greatest effect occurred in September, 1990, when productivity tripled after an amendment with 1 ml (0.3% by volume) of mangrove water. Additions greater than 3% of total volume generally led to reduction in net productivity probably due to the inhibitory effect of humic substances. In many tropical systems, tidal exchange of estuarine waters with mangrove forests is likely to be important to enhancing water column productivity by exporting organic nutrients and other growth-enhancing substances to the estuary.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5117
    Keywords: Leaf litter ; mangrove ; sediment ; decomposition ; nitrogenfixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Assays of nitrogen fixation (acetylene reduction method) were performed on fresh leaf litter (yellow leaves recently fallen from the trees), aged leaf litter (brown leaves on the forest floor) of Rhizophora mangle, Avicennia germinans, and Laguncularia racemosa; and in addition rates were measured on pneumatophores of A. germinans and mangrove sediment from two different sites along the Shark River estuary in the Everglades National Park (south Florida, USA). Differences in sediment nitrogen content between sites were not important enough to determine statistically different C:N ratios for the leaf litter, and there was no effect of site on nitrogen fixation rates. Fresh leaf litter, sediment and pneumatophores showed very low ethylene production rates, ranging from 0 to 31.3 nmol C2H4 g dry wt-1 h-1.Aged leaf litter showed the highest ethylene production rates, ranging from7.3 to 538.8 nmol C2H4 g dry wt-1h-1. Ethylene production rates showed no apparent differences in species composition, but there was an effect by the stage of decomposition of the leaves. Fresh leaf litter and mangrove sediments represent initial and final stages in decomposition, respectively, and both have minimum rates of nitrogen fixation in the forest floor. New nitrogen to this forest by fixation in leaf litter is associated with the intermediate stages of litter decomposition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...