Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-515X
    Keywords: N15 ; nitrogen ; nutrient cycling ; plants ; stable isotopes ; soil ; temperate forest ; tropical forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Several lines of evidence suggest that nitrogen in most tropical forests is relatively more available than N in most temperate forests, and even that it may function as an excess nutrient in many tropical forests. If this is correct, tropical forests should have more open N cycles than temperate forests, with both inputs and outputs of N large relative to N cycling within systems. Consequent differences in both the magnitude and the pathways of N loss imply that tropical forests should in general be more 15N enriched than are most temperate forests. In order to test this hypothesis, we compared the nitrogen stable isotopic composition of tree leaves and soils from a variety of tropical and temperate forests. Foliar δ15N values from tropical forests averaged 6.5‰ higher than from temperate forests. Within the tropics, ecosystems with relatively low N availability (montane forests, forests on sandy soils) were significantly more depleted in 15N than other tropical forests. The average δ15N values for tropical forest soils, either for surface or for depth samples, were almost 8‰ higher than temperate forest soils. These results provide another line of evidence that N is relatively abundant in many tropical forest ecosystems.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 209 (1999), S. 1-8 
    ISSN: 1573-5036
    Keywords: CH4 oxidation ; denitrification ; elevated CO2 ; N fertility ; N2O emission ; Populus tremuloides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Elevated atmospheric CO2 has the potential to change below-ground nutrient cycling and thereby alter the soil-atmosphere exchange of biogenic trace gases. We measured fluxes of CH4 and N2O in trembling aspen (Populus tremuloides Michx.) stands grown in open-top chambers under ambient and twice-ambient CO2 concentrations crossed with ‘high’ and low soil-N conditions. Flux measurements with small static chambers indicated net CH4 oxidation in the open-top chambers. Across dates, CH4 oxidation activity was significantly (P 〈 0.05) greater with ambient CO2 (8.7 μg CH4-C m-2 h-1) than with elevated CO2 (6.5 μg CH4-C m-2 h-1) in the low N soil. Likewise, across dates and soil N treatments CH_4 was oxidized more rapidly (P 〈 0.05) in chambers with ambient CO2 (9.5 μg CH4-C m-2 h-1) than in chambers with elevated CO2 (8.8 μg CH4-C m-2 h-1). Methane oxidation in soils incubated in serum bottles did not show any response to the CO2 treatment. We suggest that the depressed CH4 oxidation under elevated CO2 in the field chambers is due to soil moisture which tended to be higher in the twice-ambient CO2 treatment than in the ambient CO2 treatment. Phase I denitrification (denitrification enzyme activity) was 12–26% greater under elevated CO2 than under ambient CO2 in the ‘high’ N soil; one sampling, however, showed a 39% lower enzyme activity with elevated CO2. In both soil N treatments, denitrification potentials measured after 24 or 48 h were between 11% and 21% greater (P 〈 0.05) with twice-ambient CO2 than with ambient CO2. Fluxes of N2O in the open-top chambers and in separate 44 cm2 cores ±N fertilization were not affected by CO2 treatment and soil N status. Our data show that elevated atmospheric CO2 may have a negative effect on terrestrial CH4 oxidation. The data also indicated temporary greater denitrification with elevated CO2 than with ambient CO2. In contrast, we found no evidence for altered fluxes of N2O in response to increases in atmospheric CO2
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...