Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract In Xenopus laevis eight tRNA genes are located in a 3.18 kb tandemly repeated unit. There are 150 copies of the unit at a single locus near the long arm telomere of one of the acrocentric chromosomes in the 14–17 group. Two additional classes of tRNA gene-containing repeats have been isolated (defined by clones p3.1 and p3.2) that have structures related to that of the 3.18 kb unit. Using in situ hybridization at the electron microscopic level, the p3.2 repeats are found clustered at a single locus in the subtelomeric region on one of the submetacentric chromosomes, whereas the p3.1 repeats are clustered at a locus indistinguishable from that containing the 3.18 kb repeats. This suggests that these tDNA tandem repeats can diverge in sequence from each other without being at distantly separated loci.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0886
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract. In Xenopus laevis eight tRNA genes are located in a 3.18 kb tandemly repeated unit. There are 150 copies of the unit at a single locus near the long arm telomere of one of the acrocentric chromosomes in the 14–17 group. Two additional classes of tRNA gene-containing repeats have been isolated (defined by clones p3.1 and p3.2) that have structures related to that of the 3.18 kb unit. Using in situ hybridization at the electron microscopic level, the p3.2 repeats are found clustered at a single locus in the subtelomeric region on one of the submetacentric chromosomes, whereas the p3.1 repeats are clustered at a locus indistinguishable from that containing the 3.18 kb repeats. This suggests that these tDNA tandem repeats can diverge in sequence from each other without being at distantly separated loci.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4919
    Keywords: PARP ; poly(ADP-ribosyl)ation ; apoptosis ; DNA replication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We have focused on the roles of PARP and poly(ADP-ribosyl)ation early in apoptosis, as well as during the early stages of differentiation-linked DNA replication. In both nuclear processes, a transient burst of PAR synthesis and PARP expression occurs early, prior to internucleosomal DNA cleavage before commitment to apoptosis as well as at the round of DNA replication prior to the onset of terminal differentiation. In intact human osteosarcoma cells undergoing spontaneous apoptosis, both PARP and PAR decreased after this early peak, concomitant with the inactivation and cleavage of PARP by caspase-3 and the onset of substantial DNA and nuclear fragmentation. Whereas 3T3-L1, osteosarcoma cells, and immortalized PARP +/+ fibroblasts exhibited this early burst of PAR synthesis during Fas-mediated apoptosis, neither PARP-depleted 3T3-L1 PARP-antisense cells nor PARP -/- fibroblasts showed this response. Consequently, whereas control cells progressed into apoptosis, as indicated by induction of caspase-3-like PARP-cleavage activity, PARP-antisense cells and PARP -/- fibroblasts did not, indicating a requirement for PARP and poly(ADP-ribosyl)ation of nuclear proteins at an early reversible stage of apoptosis. In parallel experiments, a transient increase in PARP expression and activity were also noted in 3T3-L1 preadipocytes 24 h after induction of differentiation, a stage at which ~95% of the cells were in S-phase, but not in PARP-depleted antisense cells, which were consequently unable to complete the round of DNA replication required for differentiation. PARP, a component of the multiprotein DNA replication complex (MRC) that catalyzes viral DNA replication in vitro, poly(ADP-ribosyl)ates 15 of ~40 MRC proteins, including DNA pol α, DNA topo I, and PCNA. Depletion of endogenous PARP by antisense RNA expression in 3T3-L1 cells results in MRCs devoid of any DNA pol α and DNA pol δ activities. Surprisingly, there was no new expression of PCNA and DNA pol α, as well as the transcription factor E2F-1 in PARP-antisense cells during entry into S-phase, suggesting that PARP may play a role in the expression of these proteins, perhaps by interacting with a site in the promoters for these genes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...