Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Soil Biology and Biochemistry 26 (1994), S. 681-688 
    ISSN: 0038-0717
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Soil Biology and Biochemistry 26 (1994), S. 1491-1493 
    ISSN: 0038-0717
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 8 (1989), S. 247-254 
    ISSN: 1432-0789
    Keywords: Nitrification ; Abiotic factors ; Ammonium concentration ; Vmax of nitrification ; Michaelis-Menten constant for ammonium oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of temperature, water potential and ammonium concentrations were studied in field and laboratory experiments on arable soil. The two field experiments used different sampling intervals, one at daily (short-term) and the other at monthly (long-term) intervals. In the short-term field experiment, the numbers and activities of nitrifiers were assessed before and after natural rain or irrigation. The nitrifiers were apparently outcompeted by heterotrophs during the first days after wetting the soil. Potential nitrification was affected only slightly by changes in water potential, whereas the numbers of ammonium and nitrite oxidizers appeared more sensitive to these changes. The numbers of ammonium and nitrite oxidizers correlated strongly during the daily samplings. The potential nitrite-oxidation rates correlated with water potentials whereas the potential ammonium oxidation rates did not. Extractable ammonium decreased in proportion to increasing nitrate concentrations in both the rain-fed and the irrigated plots. In the long-term field experiments, the numbers of ammonium oxidizers correlated with water potentials but not with in situ temperature or with ammonium concentrations. The potential ammonium-oxidation rates correlated with water potentials and with ammonium-oxidizer numbers. The potential nitrite-oxidation rates correlated strongly with the potential ammonium-oxidation rates. The field experiments implied that nitrite oxidizers obtained substrate from ammonium oxidizers but also from nitrate reduction. In laboratory experiments nitrate accumulated at a Q 10 of about 2 and the V max for nitrification was observed at a water potential of −0.11 MPa (65% of water-holding capacity). The K m for ammonium oxidation at pH 8.2 was 1.72 mg l−1 soil water.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 2 (1986), S. 119-126 
    ISSN: 1432-0789
    Keywords: Fungi ; bacteria ; Protozoa ; Arable soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effects of four cropping systems on soil microorganisms were investigated during 3 years. The cropping systems were B0, barley without nitrogen fertilizers; B120, barley with 120 kg N ha−1 year−1; GL, grass ley receiving 200 kg N ha−1 year−1; and LL, lucerne ley without nitrogen fertilizer additions. At samplings in September during three consecutive years no differences were found between treatments. Total fungal lengths ranged between 0.7 and 2.0 × 103 m and bacterial numbers between 3.5 and 7.2 × 109 g−1 dry wt. soil. Twenty samplings over 3 years in B120 and in GL indicated higher numbers of bacteria and protozoa during the growing season, except for periods with moisture stress. No clear seasonal trends were found for the fungi. When comparing mean values for the 20 samplings, the grass ley contained significantly (P 〈 0.05) higher numbers of amoebae. Means of the bacterial numbers and biomass, total and FDA-active hyphal lengths were also higher or equal (FDA-active hyphae) but not significantly so. Seventy-nine per cent of the bacterial biomass and 73% of the total fungal lengths were found in the top soil, where also 85% of the oxygen was consumed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 6 (1988), S. 106-111 
    ISSN: 1432-0789
    Keywords: Nitrification ; Denitrification ; Soil water content ; N2O production ; Acetylene ; Ammonium fixation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The effect of soil water content [60%–100% water-holding capacity (WHC)] on N2O production during autotrophic nitrification and denitrification in a loam soil was studied in a laboratory experiment by selectively inhibiting nitrification with a low C2H2 concentration (2.1 Pa). Nitrifiers usually produced more N2O than denitrifiers. During an initial experimental period of 0–6 days the nitrifiers produced more N2O than the denitrifiers by a factor ranging from 1.4 to 16.5, depending on the water content and length of incubation. The highest N2O production rate by nitrifiers was observed at 90% WHC, when the soil had become partly anaerobic, as indicated by the high denitrification rate. At 100% WHC there were large gaseous losses from denitrification, while nitrification losses were smaller except for the first period of measurement, when there was still some O2 remaining in the soil. The use of 10 kPa C2H2 to inhibit reduction of N2O to N2 stimulated the denitrification process during prolonged incubation over several days; thus the method is unsuitable for long-term studies.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0789
    Keywords: Denitrification ; Nitrification ; Selective inhibitors ; Nitrapyrin ; Acetylene ; Nitrous oxide
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Nitrapyrin and C2H2 were evaluated as nitrification inhibitors in soil to determine the relative contributions of denitrification and nitrification to total N2O production. In laboratory experiments nitrapyrin, or its solvent xylene, stimulated denitrification directly or indirectly and was therefore considered unsuitable. Low partial pressures of C2H2 (2.5–5.0 Pa) inhibited nitrification and had only a small effect on denitrification, which made it possible to estimate the contribution of denitrification. The contribution of nitrification was estimated by subtracting the denitrification value from total N2O production (samples without C2H2). The critical C2H2 concentrations needed to achieve inhibition of nitrification, without affecting the N2O reductase in denitrifiers, must be individually determined for each set of experimental conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 1 (1985), S. 131-140 
    ISSN: 1432-0789
    Keywords: Nitrification ; MPN of ammonium oxidizers ; Chlorate inhibition ; Arable soil
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The number of ammonium-oxidizing bacteria was measured with the most probable number (MPN) method while potential ammonium oxidation rates were determined with a chlorate inhibition technique in two arable soils. A new method for measuring actual in situ ammonium oxidation in soil cores is presented. One soil was cropped for 4 years with one of four crop-fertilizer combinations: Unfertilized lucerne ley, unfertilized barley, nitrate-fertilized grass ley, or nitrate-fertilized barley. The highest ammonium oxidizer numbers and potential rates were found in the grass ley. The unfertilized barley had one-third the number and activity of the grass ley. Actual rates were in general 5–25 times lower than potential rates. The other soil was that undergoing a 27-year-old field trial with a fallow and four different cropping treatments: No addition, nitrate, nitrate + straw, or manure. Ammonium oxidizer numbers were highest in the manure and straw treatments. MPN numbers and potential rates were lowest in the fallow treatment. Typical specific potential rates were 30 ng N oxidized cell−1 h−1. Actual rates were in general 40 times lower than potential rates. Actual ammonium oxidation measurements seem to correspond to actual in situ activity at the moment of sampling, whereas the MPN technique and the potential measurements reflect events that occurred weeks to months before the sampling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: barley ; fertilizer efficiency ; leaching ; meadow fescue ; microbial biomass ; nitrate fertilizer ; 15N ; plant uptake ; potentially mineralizable nitrogen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An annual cereal, barley, and a perennial grass ley, meadow fescue, were grown in field lysimeters in Sweden and fertilized with 12 and 20g Ca(NO3)2-N m−2 yr−1, respectively. Isotope-labeled (15N) fertilizer was added during year 1 of the study, whereafter similar amounts of unlabeled N were added during years 2 and 3. The grass ley lysimeters were ploughed after the growing season of year 3 and sown with barley during year 4. The barley harvest in year 1 removed 59% of the added fertilizer N, while the fertilizer N export by two meadow fescue harvests in year 1 was 65%. The labeled N export decreased rapidly after year 1, especially in the barley, but increased slightly after ploughing of the grass ley. The microbial biomass, measured with the chloroform fumigation method, incorporated a maximum of 1.4–1.7% of the labeled N during the first seven weeks after application. Later on, the incorporation stabilized at less than 1% in both cropping systems. The susceptibility of the residual labeled N to mineralization was evaluated three years after application by means of long-term laboratory incubations. The curves of cumulative mineralized N were described by a two-component first-order regression model that differentiated between an available and a more recalcitrant fraction of potentially mineralizable N. There was no difference in the amounts of potentially mineralizable N between the cropping systems. The labeled N comprised 5 and 2% of the amounts of potentially mineralizable N in the available and more recalcitrant fraction, respectively. The mineralization rate constants for the labeled N were almost twice as high as for the total potentially mineralizable N. The available fraction of the total potentially mineralizable N was 12%, while twice that proportion of the labeled N was available. It was concluded that the short-term ley did not differ from the annual crop with respect to the early disposition of the fertilizer N and the behaviour of the residual organic N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. V 
    ISSN: 1573-5036
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 67 (1982), S. 15-34 
    ISSN: 1573-5036
    Keywords: Acetylene ; Denitrification ; Immobilization ; Mineralization ; Microbial processes N-cycling ; N2-fixation ; Nitrification ; Nitrate reduction ; Oxygen
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Description / Table of Contents: Resumen La mayoría de las transformaciones del nitrógeno en el suelo ocurren a través de los micro-organismos. Se requiere asi un conocimiento de los procesos microbiológicos con el fin de desarrollar las prácticas de manejo de los sistemas agrícolas que optimicen la absorción de nitrógeno por las raices y que minimicen las pérdidas de nitrógeno de los sistemas. Se discuten algunos aspectos de ciertos procesos microbiológicos en el ciclo de nitrógeno como su importancia para el manejo eficiente de agroecosistemas. Varios grupos de microorganismos compiten por el nitrógeno disponible y se requieren dados cuantitativos sobre la cinética de absorción de estos grupos de manera de estimar su capacidad de competir bajo diferentes condiciones. La influencia de los factores abióticos tales como la concentración de oxígeno, la concentración de nitrógeno inorgánico y el pH se discuten en relación a los diferentes procesos. Se discute también la importancia del acetileno como herramienta para estudiar el ciclo de nitrógeno.
    Notes: Abstract Most nitrogen transformations in soil are carried out by micro-organisms. An understanding of the microbiological processes is thus necessary in order for us to devise management practices in agricultural ecosystems, which will optimize plant root uptake of nitrogen and minimize nitrogen losses from the systems. Some aspects of the individual microbiological processes in the nitrogen cycle are discussed and their importance for an efficient management of agroecosystems. In soil various groups of organisms compete for available inorganic nitrogen and quantitative data are needed on the uptake kinetics for these various groups in order to be able to assess their competitive ability under different conditions. The influence of abiotic factors such as oxygen concentration, inorganic nitrogen concentration and pH is discussed in relation to the different processes. The importance of acetylene as a tool in nitrogen cycling studies is discussed briefly.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...