Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effects of CNS axotomy on glutamate transporter and glutamate receptor expression were evaluated in adult rats following unilateral fimbria-fornix transections. The septum and hippocampus were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted by using antibodies directed against glutamate transporters (GLT-1, GLAST, and EAAC1) and glutamate receptors (GluR1, GluR2/3, GluR6/7, and NMDAR1), and they were assayed for glutamate transport by d-[3H]aspartate binding. GLT-1 was decreased at 7 and 14 days postlesion within the ipsilateral septum and at 7 days postlesion in the hippocampus. GLAST was decreased within the ipsilateral septum and hippocampus at 7 and 14 days postlesion. No postlesion alterations in EAAC1 immunoreactivity were observed. d-[3H]Aspartate binding was decreased at 7, 14, and 30 days postlesion within the ipsilateral septum and 14 days postlesion in the hippocampus. GluR2/3 expression was down-regulated at 30 days postlesion within the ipsilateral septum, whereas GluR1, GluR6/7, and NMDAR1 immunoreactivity was unchanged. In addition, no alterations in glutamate receptor expression were detected within hippocampal homogenates. This study demonstrates a selective down-regulation of primarily glial, and not neuronal, glutamate transporters and a delayed, subtype-specific down-regulation of septal GluR2/3 receptor expression after regional deafferentation within the CNS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A dramatic loss of glutamate transport has been observed in sporadic amyotrophic lateral sclerosis and has been postulated to contribute to the disease. Experimentally, this hypothesis was corroborated by mimicking the chronic loss of glutamate transport in post-natal rat spinal cord organotypic cultures through the use of glutamate transport inhibitors. This system is characterized by a relatively selective slow loss of ventral horn motor neurons resulting from glutamate transport inhibition. In this study, spinal cord organotypic cultures were used to test various drugs to evaluate their neuroprotective properties against this slow glutamate-mediated neurotoxicity. The most potent neuroprotectants were drugs that altered glutamate neurotransmission, including non-NMDA receptor antagonists (GYKI-52466, PD144216, and PD139977) and drugs that could block presynaptic release or synthesis (riluzole and gabapentin). In addition, some antioxidants (U83836E and N-t-butyl-α-phenylnitrone) and inhibitors of nitric oxide synthesis (NG-monomethyl-l-arginine acetate) were modestly neuroprotective. The calcium endonuclease inhibitor aurintricarboxylic acid and the calcium release inhibitor dantrolene also provided partial motor neuron protection. However, several antioxidants and calcium channel antagonists had no excitotoxic neuroprotectant activity. This system provides a preclinical screening method for the burgeoning number of drugs postulated for clinical trials in motor neuron disease and a model to evaluate the mechanisms of chronic glutamate toxicity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The role of endogenous benzodiazepine receptor ligands in the pathogenesis of hepatic encephalopathy was studied in humans and in rat models of hepatic encephalopathy. Endogenous benzodiazepine ligands were extracted from rat brain and human CSF by acid treatment and purification by HPLC. Detection and partial characterization of these endogenous benzodiazepine ligands were carried out using both radioreceptor binding assays and radioimmunoassays with anti-benzodiazepine antibodies. Four different benzodiazepine receptor ligands were identified in human and rat tissue, two of which may be diazepam and desmethyldiazepam, based on elution profiles and anti-benzodiazepine antibody reactivity. Human CSF and serum from patients with hepatic encephalopathy contained ∼ 10 times more endogenous benzodiazepine receptor ligand than CSF from controls or nonencephalopathic patients with liver disease. The levels of brain benzodiazepine receptor ligand compounds were also increased ∼ 10-fold in rats suffering from fulminant hepatic failure, but not in rats with portacaval shunts, a model of chronic hepatic disease. The increased concentrations of these substances could be behaviorally significant and may contribute to the pathogenesis of hepatic encephalopathy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 46 (1986), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Aspartate levels and release from rat striatal slices following the inhibition of glutamine synthetase (GS) by methionine sulfoximine (MSO) were studied. Striatal levels of aspartate and glutamine were decreased over time in a manner that correlated with GS inhibition. Ca2+-dependent, K+-stimulated aspartate release was diminished in striatal tissue slices from animals pretreated with MSO. The decreased release of aspartate correlated over time with the inhibition of GS. The addition of glutamine to the perfusion medium completely reversed the effects of MSO on calcium-dependent aspartate release. It is suggested that glutamine is a major precursor for transmitter aspartate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Low extracellular glutamate content is maintained primarily by high-affinity sodium-dependent glutamate transport. Three glutamate transporter proteins have been cloned: GLT-1 and GLAST are astroglial, whereas EAAC1 is neuronal. The effects of axotomy on glutamate transporter expression was evaluated in adult rats following unilateral fimbria-fornix and corticostriatal lesions. The hippocampus and striatum were collected at 3, 7, 14, and 30 days postlesion. Homogenates were immunoblotted using antibodies directed against GLT-1, GLAST, EAAC1, and glial fibrillary acidic protein and assayed for glutamate transport by d-[3H]aspartate binding. GLT-1 immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 14 days postlesion. GLAST immunoreactivity was decreased within the ipsilateral hippocampus and striatum at 7 and 14 days postlesion. No alterations in EAAC1 immunoreactivity were observed. d-[3H]Aspartate binding was decreased at 14 days postlesion within the ipsilateral hippocampus and at 7 and 14 days postlesion within the ipsilateral striatum. By 30 days postlesion, glutamate transporters and d-[3H]aspartate binding returned to control levels. This study demonstrates the down-regulation of primarily glial, and not neuronal, glutamate transporters following regional disconnection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Chemicals that are active at the benzodiazepine receptor (endozepines) are naturally present in the CNS. These substances are present in tissue from humans and animals and in plants and fungi. Using selective extraction protocols, HPLC purification, receptor binding displacement studies, and selective anti-benzodiazepine antibodies, we have identified six or seven peaks of endozepines in rat and human brain. All material could competitively displace [3H]flunitrazepam binding to cerebellar benzodiazepine binding sites. Two peaks also competitively displaced Ro 5-4864 binding to the mitochondrial benzodiazepine binding site. Total amounts of brain endozepines were estimated to be present in potentially physiological concentrations, based on their ability to displace [3H]flunitrazepam binding. Although endozepine peaks 1 and 2 had HPLC retention profiles similar to those of nordiazepam and diazepam, respectively, gas chromatography-mass spectrometry as well as high-performance TLC revealed biologically insignificant amounts of diazepam (〈 0.02 pg/g) and nordiazepam (〈0.02 pg/g) in the purified material. Electrophysiologically, some purified endozepines positively modulated γ-aminobutyric acid (GABA) action on Cl− conductance, monitored in patch-clamped cultured cortical neurons or in mammalian cells transfected with cDNA encoding various GABAA receptor subunits. These studies demonstrate that mammalian brains contain endozepines that could serve as potent endogenous positive allosteric modulators of GABAA receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 39 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Experiments were conducted to investigate the effects of the convulsant l-methionine-dl-sulfoximine (MSO) on striatal dopamine (DA) metabolism. Intraventricular injections of MSO produced a transient increase in striatal DA release followed by inhibition of DA release for up to 3 days, which paralleled the inhibition by MSO of the enzyme glutamine synthetase (GS). DA synthesis was decreased for up to 24 h after injection of MSO, but returned to normal within 3 days after MSO administration. Intrastriatal injections of MSO produced a pronounced decrease in striatal DA release and inhibition of striatal GS activity 24 h postinjection but, unlike intraventricular MSO, did not produce behavioral convulsions. Glutamate-DA interactions may be responsible for the observed effects.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Surface expression of the glial glutamate transporter EAAT1 is stimulated by insulin-like growth factor 1 through activation of phosphatidylinositol-3-kinase. Downstream targets include serum and glucocorticoid-sensitive kinase isoforms SGK1, SGK2 and SGK3, and protein kinase B. SGK1 regulates Nedd4-2, a ubiquitin ligase that prepares cell membrane proteins for degradation. To test whether Nedd4-2, SGK1, SGK3 and protein kinase B regulate EAAT1, cRNA encoding EAAT1 was injected into Xenopus oocytes with or without additional injection of wild-type Nedd4-2, constitutively active S422DSGK1, inactive K127NSGK1, wild-type SGK3 and/or constitutively active T308D,S473DPKB. Glutamate induces a current in Xenopus oocytes expressing EAAT1, but not in water-injected oocytes, which is decreased by co-expression of Nedd4-2, an effect reversed by additional co-expression of S422DSGK1, SGK3 and T308D,S473DPKB, but not K127NSGK1. Site-directed mutagenesis of the SGK1 phosphorylation sites in the Nedd4-2 protein (S382A,S468ANedd4-2) and in the EAAT1 protein (T482AEAAT1, T482DEAAT1) significantly blunts the effect of S422DSGK1. Moreover, the current is significantly larger in T482DEAAT1- than in T482AEAAT1-expressing oocytes, indicating that a negative charge mimicking phosphorylation at T482 increases transport. The experiments reveal a powerful novel mechanism that regulates the activity of EAAT1. This mechanism might participate in the regulation of neuronal excitability and glutamate transport in other tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: There is increasing evidence that levels of glutamate are elevated in certain brain regions immediately prior to and during induction and propagation of seizures. Modulation of high-affinity glutamate uptake is a potential mechanism responsible for the elevated levels observed with seizures. To date, three distinct Na+-dependent glutamate transporters have been cloned from rat and rabbit: GLT-1, GLAST, and EAAC-1. We performed a series of experiments to determine whether levels of these transporters are altered in amygdala-kindled rats. Levels of GLT-1, GLAST, and EAAC-1 were examined in three brain regions (hippocampus, piriform cortex/amygdala, and limbic forebrain) by quantitative immunoblotting using subtype-specific antibodies. GLAST protein was down-regulated in the piriform cortex/amygdala region of kindled rats as early as 24 h after one stage 3 seizure and persisting through multiple stage 5 seizures. In contrast, kindling induced an increase in EAAC-1 levels in piriform cortex/amygdala and hippocampus once the animals had reached the stage 5 level. No changes in GLT-1 were observed in any region examined. Changes in transporter levels could contribute to the changes in glutamate levels seen with kindling.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In the mature brain, removal of glutamate from the synaptic cleft plays an important role in the maintenance of subtoxic levels of glutamate. This requirement is handled by a family of glutamate transporters, EAAT1, EAAT2, EAAT3, and EAAT4. Due to the involvement of glutamate also in neuronal development, it is believed that glutamate transport plays a role in developmental processes as well. Therefore, we have used immunohistochemical and immunoblot analysis to determine the distribution of the four glutamate transporters during human brain development using human pre- and postnatal brain tissue. Regional analysis showed that each transporter subtype has a unique distribution during development. EAAT2 was the most prominent glutamate transporter subtype and was highly enriched in cortex, basal ganglia, cerebellum, and thalamus in all ages examined. EAAT1 immunoreactivity was lower than that of EAAT2, with predominant localization in cortex, basal ganglia, hippocampus, and periventricular region. EAAT3 was located mainly in cortex, basal ganglia, and hippocampus, and EAAT4 was found only in cortex, hippocampus, and cerebellar cortex. The distinct regional distribution of various EAAT subtypes and also the transient expression of specific EAAT subtypes during development suggest multiple functional roles for glutamate transporters in the developing brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...