Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of hepato-biliary-pancreatic surgery 5 (1998), S. 273-285 
    ISSN: 1436-0691
    Keywords: Key words: fulminant hepatic failure ; bioartificial liver ; porcine hepatocytes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract: During the past decade, whole organ transplantation has become the only clinically effective method of treating fulminant hepatic failure and chronic liver failure due to specific genetic, hepatocellular, and anatomic defects of liver function. However, wider application of liver transplantation is restricted by shortage of organ donors, high cost, relatively high morbidity, and need for life-long immunosuppression. As a result, investigators have attempted to develop alternative methods to treat liver insufficiency. These ranged from use of plasma exchange to utilization of detoxification columns and extracorporeal devices loaded with various liver tissue preparations. Recently, advances in hepatocyte isolation and culture techniques, improved understanding of hepatocyte-matrix interactions, availability of new biomaterials, improved hollow-fiber technology, and better understanding of flow and mass transport across semipermeable membranes have resulted in the development of a new generation of liver assist devices. Some of these devices, including the one developed by the authors, are currently being tested in the clinical setting. In this paper, the past experience with liver support systems is reviewed, the present status of the field is critically examined, and the results of a phase I clinical trial with the bioartificial liver, utilizing primary porcine hepatocytes, are summarized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 50 (1996), S. 382-391 
    ISSN: 0006-3592
    Keywords: liver ; artificial organs ; hepatic encephalopathy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Despite recent advances in medical therapy, patients with fulminant hepatic failure (FHF) have a mortality rate approaching 90%. Many patients die because of failure to arrest the progression of cerebral edema. Liver transplantation has improved survival to 65% to 75%. However, there is a shortage of donors and approximately one half of the patients with FHF will die while awaiting liver transplantation. There is thus a need to develop an extracorporeal liver assist system to help keep these patients alive and neurologically intact until either an organ becomes available for transplantation or the native liver recovers from injury. Such a system could also be used during the period of functional recovery from massive liver resection or to assist patients with decompensated chronic liver disease. Over the years, various methods utilizing charcoal and resin hemoperfusion, dialysis, plasma exchange, and other methods of blood detoxification have been developed and tested, but none have gained wide acceptance. This was due to: (i) incomplete understanding of the pathophysiology of liver failure; (ii) lack of accurate methods of assessment, quantitation, and stratification of the degree of liver dysfunction; and (iii) inadequate numbers of prospective controlled clinical trials examining the effects of specific therapeutic modalities. Liver support systems utilizing liver tissue preparations were developed in the 1950s, but it was not until recently that advances in hepatocyte isolation and culture, better understanding of hepatocyte-matrix interactions, and improved hollow-fiber technology have resulted in the development of a new generation of liver assist devices. Some of these devices are currently being tested in the clinical setting. In a preliminary clinical study, we have used a porcine hepatocyte-based liver support system to treat patients with acute liver failure as well as patients with acute exacerbation of chronic liver disease. Patients in the first group, who were candidates for transplantation, were successfully bridged to a transplant with excellent survival. No obvious benefit from bioartifical liver treatments was seen in the second group. It is possible that, in this group, patients will have to be treated earlier and for longer periods of time. Prospective controlled trials will be initiated as soon as the current phase I study is concluded to determine the efficacy of this system in both patients populations. © 1996 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 645-653 
    ISSN: 0006-3592
    Keywords: hepatocytes ; liver failure ; bioartificial liver ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Despite recent advances in medical supportive therapy, patients with severe fulminant hepatic failure (FHF) have mortality rate approaching 90%. Investigators have attempted to improve survival by using various extracorporeal liver support systems loaded with sorbents and liver tissue preparations. None of them succeeded in gaining clinical acceptance and orthotopic liver transplantation (OLT) remains a primary therapeutic option for patients with FHF. In this study, authors discuss the systems which utilize isolated hepatocytes. Most of these devices were tested in vitro and in animals with chemically and surgically induced liver failure. In some studies, signficant levels of detoxification and liver functions were achieved. The authors describe their own hepatocyte-based artificial liver (BAL). It is based on plasma perfusion through a hollow-fiber module seeded with matrix-anchored porcine hepatocytes. The BAL was used 14 times to treat 9 patients with acute liver failure. On 10 occasions, a charcoal column was included in the plasma circuit. Each treatment lasted 7 ± 1 h. All procedures were tolerated well and 8 patients (including 6 patients with FHF) underwent OLT. Five patients with increased intracranial pressure (ICP) and evidence of decerebration had normalization of ICP and enjoyed full neurologic recovery after OLT. Laboratory data showed evidence for bilirubin conjugation, decrease in blood ammonia, maintenance of low lactic acid levels, and increase in the ration between the branched chain and aromatic amino acids. No allergic reactions to xenogeneic hepatocytes were observed. The authors conclude that BAL treatment with porcine hepatocytes appears to be safe and can help maintain patients alive and neurologically intact until a liver becomes available for transplantation. © 1994 John Wiley & Sons, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...