Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In the present communication we have investigated the allosteric coupling between the γ-aminobutyric acidA (GABAA) receptor and the pharmacologically different benzodiazepine (BZD) receptor subtypes in membranes from various rat nervous system regions. Two types of BZD receptors (type I and type II) have been classically defined using CL 218.872. However, using zolpidem, three different BZD receptors have been identified by binding displacement experiments in membranes. These BZD receptor subtypes displayed high, low, and very low affinity for zolpidem. The distribution of the high- and low-affinity binding sites for zolpidem was similar to that of type I and type II subtypes in cerebellum, prefrontal cortex, and adult cerebral cortex. On the other hand, the very-low-affinity binding site was localized in relative high proportion in spinal cord, hippocampus, and newborn cerebral cortex and, to a minor extent, in superior colliculus. The allosteric coupling between the GABAA receptor and the BZD receptor subtypes was different. The high- and low-affinity binding sites for zolpidem seemed to have a similar high degree of coupling, except in spinal cord. On the other hand, the very-low-affinity binding site for zolpidem displayed a low degree of coupling with the GABAA receptor. These results seem to indicate that the different efficacy of GABA in enhancing the [3H]flunitrazepam binding could be due to the different BZD receptor subtypes present in the GABAA/BZD receptor complex and, moreover, led us to speculate that the low GABA efficacy found in membranes from spinal cord, hippocampus, and newborn cerebral cortex might be due to the presence in relatively high proportion of the very-low-affinity binding site for zolpidem.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The aging-associated changes in hippocampal benzodiazepine (ω) receptor isotypes have been investigated in rats of the Wistar and Fischer 344 strains. Displacement experiments of [3H]flunitrazepam binding by zolpidem demonstrated that in hippocampal membranes from adult (3-month-old) Wistar strain rats, high (type I; ω1)-, intermediate (type IIM; ω2)-, and low (type IIL; ω5)- affinity sites for this imidazopyridine account for 27.1 ± 7.5, 44.2 ± 7.5, and 28.8 ± 5.1%, respectively. In hippocampal membranes from aged (24-month-old) rats of the same strain, the relative abundance of these sites was 42.8 ± 9.3, 26.3 ± 4, and 36.0 ± 5.9%, respectively. In contrast, no significant difference was observed in the whole benzodiazepine (ω) binding site density between adult and aged rats. The increase in type I (ω1) binding site density in the hippocampus of aged rats was also demonstrated in saturation experiments with [3H]zolpidem. This aging-induced increase in [3H]zolpidem binding was also observed in hippocampal membranes from Fischer 344 rats. Moreover, in both rat strains, GABA induced a greater enhancement of [3H]zolpidem (5 nM) binding to type I (ω1) sites (GABA shift) in aged than in adult hippocampal membranes. Quantitative autoradiographic analysis of [3H]zolpidem binding to coronal brain sections from adult and aged Fischer 344 rats demonstrated that the aging-associated increases in the density of type I (ω1) binding sites were restricted to the hippocampus. Moreover, increases in binding density were larger in the dentate gyrus and in the CA2 field than in the CA1 and CA3 fields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The presence of two heterologous α subunits and a single benzodiazepine binding site in the GABAA receptor implicates the existence of pharmacologically active and inactive α subunits. This fact raises the question of whether a particular α subtype could predominate performing the benzodiazepine binding site. The hippocampal formation expresses high levels of α subunits with different benzodiazepine binding properties (α1, α2 and α5). Thus, we first demonstrated the existence of α2–α1 (36.3 ± 5.2% of the α2 population) and α2–α5 (20.2 ± 2.1%) heterologous receptors. A similar α2–α1 association was observed in cortex. This association allows the direct comparison of the pharmacological properties of heterologous native GABAA receptors containing a common (α2) and a different (α1 or α5) α subunit. The α2 subunit pharmacologically prevailed over the α1 subunit in both cortex and hippocampus (there was an absence of high-affinity binding sites for Cl218,872, zolpidem and [3H]zolpidem). This prevalence was directly probed by zolpidem displacement experiments in α2–α1 double immunopurified receptors (Ki = 295 ± 56 nm and 200 ± 8 nm in hippocampus and cortex, respectively). On the contrary, the α5 subunit pharmacologically prevailed over the α2 subunit (low- and high-affinity binding sites for zolpidem and [3H]L-655,708, respectively). This prevalence was probed in α2–α5 double immunopurified receptors. Zolpidem displayed a single low-affinity binding site (Ki = 1.73 ± 0.54 µm). These results demonstrated the existence of a differential dominance between the different α subunits performing the benzodiazepine binding sites in the native GABAA receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of neuroscience 9 (1997), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The expression of the GABAA receptor subunit mRNAs by layer V pyramidal neurons of the primary visual cortex and cerebellar Purkinje cells was analysed by single-cell reverse transcription of the mRNAs and amplification of the resulting cDNAs by the polymerase chain reaction. Neurons were identified by infrared Videomicroscopy, and GABAA-mediated miniature inhibitory postsynaptic currents were recorded. In Purkinje cells, α1, β2, β3, γ2s and γ2L subunit mRNAs were detected within a single cell. In layer V pyramidal cells, a total of ten GABAA receptor subunit mRNAs could be detected, with a mean of seven subunit mRNAs per cell, suggesting GABAA receptor heterogeneity within a single pyramidal cell.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 85 (2003), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: We previously reported that the pharmacological properties of the hippocampal GABAA receptor and the expression of several subunits are modified during normal ageing. However, correlation between these post-synaptic modifications and pre-synaptic deficits were not determined. To address this issue, we have analysed the mRNA levels of several GABAergic molecular markers in young and old rat hippocampus, including glutamic acid decarboxylase enzymes, parvalbumin, calretinin, somatostatin, neuropeptide Y and vasoactive intestinal peptide (VIP). There was a differential age-related decrease in these interneuronal mRNAs that was inversely correlated with up-regulation of the α1 GABA receptor subunit. Somatostatin and neuropeptide Y mRNAs were most frequently affected (75% of the animals), then calretinin and VIP mRNAs (50% of the animals), and parvalbumin mRNA (25% of the animals) in the aged hippocampus. This selective vulnerability was well correlated at the protein/cellular level as analysed by immunocytochemistry. Somatostatin interneurones, which mostly innervate principal cell distal dendrites, were more vulnerable than calretinin interneurones, which target other interneurones. Parvalbumin interneurones, which mostly innervate perisomatic domains of principal cells, were preserved. This age-dependent differential reduction of specific hippocampal inteneuronal subpopulations might produce functional alterations in the GABAergic tone which might be compensated, at the post-synaptic level, by up-regulation of the expression of the α1 GABAA receptor subunit.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...