Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 91 (2002), S. 4312-4318 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Results of two-dimensional electrostatic modeling of organic field-effect transistors, focusing on the formation of the conductive channel, are reported. The effect on channel formation of the choice of the source and drain contact metal is investigated for both top- and bottom-contact device structures. High-work-function metal (e.g., gold) source and drain contacts produce a conducting p-type region near these contacts. In contrast, low-work-function metal source and drain contacts (e.g., magnesium) lead to depleted regions. In the center of the device, between the source and drain contacts, the channel carrier density at a fixed gate bias is determined by the work function of the gate contact material, and is essentially independent of the metal used to form the source and drain contacts. The principal difference between top- and bottom-contact structures is the spatial variation of the charge density in the vicinity of the source and drain contacts. The channel carrier density for a fixed gate bias (and gate contact material) between the source and drain electrodes is essentially the same for the two structures. Finally, the dependence of the transistor threshold voltage on the gate contact metal work function and the device implications of the spatial variation of the induced charge density are discussed. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 6864-6867 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Monte Carlo method is used to simulate electron transport for electric field strengths up to 350 kV/cm in bulk, wurtzite structure ZnO. The relevant parts of the conduction bands of a first-principles band structure are approximated by spherically symmetric, nonparabolic valleys located at the Γ and Umin symmetry points of the Brillouin zone. It is shown that the analytic expressions represent the band structure and the density of states well over a range of nearly 5 eV from the bottom of the conduction band. The simulated electron steady-state drift velocity versus electric field characteristics are calculated for lattice temperatures of 300, 450, and 600 K. For room temperature, drift velocities higher than 3×107 cm/s are reached at fields near 250 kV/cm. Examination of the electron energy distributions shows that the strong decrease of the differential mobility with increasing electric field in the field range studied is to be associated with the pronounced nonparabolicity of the central valley and not with transfer of electrons to satellite valleys. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 81 (1997), S. 502-505 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The current voltage relationships of AlGaAs/GaAs modulation doped field effect transistors (MODFETs) were measured as a function of applied uniaxial stress. Stresses in the [110] and [11¯0] directions on MODFETs that were grown on a (001) substrate produced threshold shifts of opposite sign. Stresses in [110] and [11¯0] directions resulted in threshold voltage pressure coefficients of −15 and 64 mV/Kbar, respectively. The asymmetric shifts in the threshold voltages are attributed to piezoelectric effects. In addition, stress induced changes in the slopes of the transconductance versus gate-to-source voltage relationships were also measured. For stresses in the [110] and [11¯0] directions, the dependencies were 0.4 and −0.7 mS/(VKbar), respectively.© 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 2517-2521 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The electronic structure of a novel nanometer scale semiconductor quantum wire structure [S. Y. Chou and Y. Wang, Appl. Phys. Lett. 63, 788 (1993)] has been calculated self-consistently. The structure has two control parameters, the voltage applied to a split gate and the voltage applied to a wire gate. The influences of both the split gate and the narrow wire gate which is placed inside the gap of the split gate, on the electronic structure of the system are examined. We show that varying the voltage on either the split gate or the wire gate changes the induced quantum wire confinement potential profile, the energy level spacing, the channel electron density, and the effective channel width. Results for the ballistic conductance of the device as a function of the two control voltages are extracted from the electronic structure calculations and are found to be in satisfactory agreement with experimental data. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 7770-7774 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We show experimentally that current–voltage characteristics of double-barrier resonant tunneling devices (DBRTDs) can be modified by internal polarization fields due to the piezoelectric effect induced by external uniaxial stresses. Electric polarization fields, perpendicular to the interfaces, arise in DBRTDs grown on (001)-oriented substrates under uniaxial, compressive stresses parallel to the (110) or (11¯0) crystal orientations, and in DBRTDs grown on (111)B-oriented substrates under stress parallel to (111) crystal orientation. The voltages at which the resonant tunneling current peaks occur (peak voltages) are sensitive to the polarization fields induced by external stresses. The peak voltages can shift to more positive voltages or more negative voltages depending on the directions of applied stresses. We measured current–voltage characteristics of AlAs/GaAs/AlAs double-barrier resonant tunneling structures as a function of external stresses at 77 K. Uniaxial stress was applied parallel to the (110) and the (11¯0) crystal orientations for (001)-oriented DBRTDs, as well as to the (111) orientation for (111)B-oriented DBRTDs. With the substrates grounded in all the measurements, we found that the peak voltages shift to more positive voltages for (001)-oriented DBRTDs under stress along the (110) orientation and for (111)-oriented DBRTDs under the stress along (111) orientation, and to more negative voltages for (001)-oriented devices under stress along the (11¯0) orientation. The results are in agreement with our calculations published in the preceding article, which take into account the piezoelectric effect and band alignment under stress. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 79 (1996), S. 7763-7769 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Calculations of the effects of external stress on the current–voltage characteristics of double-barrier (001)- and (111)-oriented resonant tunneling devices are presented. Crystal strains arising from the application of external pressure and, in pseudomorphic structures, lattice mismatch cause shifts in the conduction and valence bands of the well and barrier layers with respect to the unstrained alignment. For certain stress orientations piezoelectric effects give rise to internal electric fields parallel to the current direction. The combined piezoelectric and band-structure effects modulate the transmission resonances which control the shape of the current versus voltage characteristics of the structures. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 78 (1995), S. 1798-1803 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The effects of electron–electron interaction on the electronic structure of a three-dimensional model quantum box are studied. The potential in the lateral plane of the quantum box is taken to be a two-dimensional harmonic potential, and an infinite quantum-well potential is used to represent the confinement in the vertical direction. Three-dimensional two-electron wave functions are constructed by the configuration interaction technique. Exchange and correlation are found to affect the electronic structure strongly. The effect of the finite thickness of the quantum box on the electronic structure is examined. It is shown that the electron–electron interaction can induce interesting polarization effects not only in the lateral plane but also in the vertical direction of the quantum box. Numerical results based on GaAs material parameters are presented. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 59 (1991), S. 1191-1193 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A novel manifestation of piezoelectric effects in GaAs has been observed. The change of barrier height, φB, of Schottky diodes induced by uniaxial stresses, S, along 〈100〉, 〈011〉, 〈01¯1〉, and 〈111〉 has been measured. Shifts in φB due to the appearance of piezoelectric polarization charges at the semiconductor-metal interface for directions other than 〈100〉 are observed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 4777-4781 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Monte Carlo simulations of electron transport based upon an analytical representation of the lowest conduction bands of bulk, wurtzite phase GaN are used to develop a set of transport parameters for devices with electron conduction in GaN. Analytic expressions for spherical, nonparabolic conduction band valleys at the Γ, U, M, and K symmetry points of the Brillouin zone are matched to experimental effective mass data and to a pseudopotential band structure. The low-field electron drift mobility is calculated for temperatures in the range of 300–600 K and for ionized impurity concentrations between 1016 and 1018 cm−3. Compensation effects on the mobility are also examined. Electron drift velocities for fields up to 500 kV/cm are calculated for the above temperature range. To aid GaN device modeling, the drift mobility dependences on ambient temperature, donor concentration, and compensation ratio are expressed in analytic form with parameters determined from the Monte Carlo results. Analytic forms are also given for the peak drift velocity and for the field at which the velocity peak is reached as functions of temperature. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 1446-1449 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The Monte Carlo method is used to simulate electron transport in bulk, wurtzite phase AlN using a three valley analytical band structure. Spherical, nonparabolic conduction band valleys at the Γ, K, and U symmetry points of the Brillouin zone are fitted to a first-principles band structure. The electron drift mobility is calculated as a function of temperature and ionized donor concentration in the ranges of 300–600 K and 1016–1018 cm−3, respectively. The effect of compensation on ionized impurity scattering and the associated change in the mobility are considered. The simulated electron steady-state drift velocity and valley occupancy for electric fields up to 600 kV/cm are presented for 300, 450, and 600 K. Our calculations predict that AlN will exhibit a much smaller negative differential mobility effect than GaN, and that the drift velocity versus electric field curve will show a very broad peak. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...