Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 67 (1996), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: A combination of posttranslational modifications contributes to the high heterogeneity of brain tubulin in mammals. In this report, the structures of the detyrosinated carboxy-terminal peptides of α-tubulin from newborn and adult mouse brain were compared. The heterogeneity of these carboxy-terminal peptides was observed to increase from newborn to adult brain tubulin. The major part of this increased heterogeneity is due to the posttranslational excision of Glu450, which makes α-tubulin nontyrosinatable (Δ-2 tubulin). The structures of the polyglutamyl side chain of the bi- and triglutamylated peptides were analyzed in this work. In polyglutamylation of α-tubulin, the first glutamyl residue can only be amide-linked to the γ-carboxyl group of Glu445, but the additional residues may be linked either to the γ- or to the α-carboxyl groups of the preceding one. By optimized reverse-phase separations and comparison with synthetic peptides corresponding to all possible linkages for the biglutamylated (γ1α2, γ1γ2) and triglutamylated (γ1α2α3, γ1γ2γ3, γ1α2γ3, γ1γ2α3, γ1γ2α2) tubulin peptides, it was possible to conclude that the mode of linkage connecting the second and third additional glutamyl residues corresponds mostly to α-bond structures, for both newborn and adult mice.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...