Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Autonomic & autacoid pharmacology 24 (2004), S. 0 
    ISSN: 1474-8673
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Chemistry and Pharmacology , Medicine
    Notes: 1 The role of histamine in heat-induced cardiovascular changes is uncertain. The purpose of this study was to examine effects of histamine H-1- and H-2-antagonism on heart rate, mean arterial blood pressure (MAP), localized body temperature changes, survival times, and lethal body temperatures that occur during the exposure of anaesthetized rats to 35 GHz radio frequency radiation (RFR). 2 Forty-eight ketamine-anaesthetized Sprague–Dawley rats were exposed, in several different treatment groups (n = 8 in each), to 35 GHz RFR at a level that resulted in significant body heating and subsequent death. During irradiation, a continuous increase in heart rate and a biphasic response in blood pressure (initial increase followed by a decrease) were observed in all groups of animals. 3 An H-1-antagonist, diphenhydramine (1 mg kg−1 body wt) and an H-2-antagonist, cimetidine (5 mg kg−1), administered after sustained RFR exposure, failed to reverse the RFR-induced hypotension. High doses of the drugs (5 and 10 mg kg−1, respectively) also did not alter the response. Post-RFR survival time was significantly decreased in the high-dose drug-treated group, compared with vehicle-treated (0.9% NaCl, 50% ethanol and 50% D5W) controls. 4 In experiments in which the two drugs were administered prior to RFR exposure, MAP in animals receiving high-dose antihistamines was significantly depressed compared with that of vehicle-treated animals during the first 35 min of RFR exposure. Antihistamine pretreatment, however, did not alter the total RFR exposure time required for death to occur. 5 In summary, pharmacological blockade of H-1 and H-2 receptors is not beneficial in anaesthetized rats made hypotensive by RFR exposure. This indicates that activation of H-1 and H-2 receptors by histamine does not occur to any significant extent and does not mediate the hypotensive response developed in this model of hyperthermia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0197-8462
    Keywords: cortex ; electromagnetic fields ; heat stress ; hypothalamus ; thermoregulation ; nonuniform heating ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Nonuniform heating may result from microwave (MW) irradiation of tissues and is therefore important to investigate in terms of health and safety issues. Hypothalamic (Thyp), cortical (Tctx), tympanic (Tty), and rectal (Tre) temperatures were measured in rats exposed in the far field, k-polarization (i.e., head pointed toward the transmitter horn and E-field in vertical direction) to two power densities of 2.06 GHz irradiation. The high-power density (HPM) was 1700 mW/cm2 [specific absorption rate (SAR): hypothalamus 1224 W/kg; cortex 493 W/kg]; the low-power density (LPM) was 170 mW/cm2 (SAR: hypothalamus 122.4 W/kg; cortex 49.3 W/kg). The increase (rate-of-rise, in °C/s) in Thyp was significantly greater than those in Tctx or Tre when rats were exposed to HPM. LPM produced more homogeneous heating. Quantitatively similar results were observed whether rats were implanted with probes in two brain sites or a single probe in one or the other of the two sites. The qualitative difference between regional brain heating was maintained during unrestrained exposure to HPM in the h-polarization (i.e., body parallel to magnetic field). To compare the temperature changes during MW irradiation with those produced by other modalities of heating, rats were immersed in warm water (44 °C, WWI); exposed to a warm ambient environment (50 °C, WSED); or exercised on a treadmill (17 m/min 8% grade) in a warm ambient environment (35 °C, WEX). WWI produced uniform heating in the regions measured. Similar rates-of-rise occurred among regions following WSED or WEX, thus maintaining the pre-existing gradient between Thyp and Tctx. These data indicate that HPM produced a 2-2.5-fold difference in the rate-of-heating within brain regions that were separated by only a few millimeters. In contrast, more homogeneous heating was recorded during LPM or nonmicrowave modalities of heating. Bioelectromagnetics 19:341-353, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...