Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0630
    Keywords: 79.60.Jv
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract In this study the electron diffusion length L n is determined from the relative spectral response of the photocurrent characteristics of the p/i/n sandwich structure ITO/a-SiC:H(p-type)/a-Si:H/a-Si:H(n-type)/Pd. The techniques used for the preparation of the a-Sic:H and a-Si:H amorphous films were glow-discharge and rf magnetron sputtering, respectively. The thickness of the p-type, intrinsic and n-type layer were 400 Å, 7000 Å and 600 Å, respectively. The response of the short-circuit current density J sc was measured versus the photon energy hv at both constant light intensity and constant temperature. The electron diffusion length was found to be 0.31 μm by means of the method of Agarwala and Tewary. Although, in the case of single crystals many diffusion length measurements have been made, there are only few papers for amorphous silicon this films [1]. As it is well-known, the diffusion length of the charge carriers is the most important parameter from the point of view of solar cell applications [2]. In order to obtain a high efficiency in a solar cell all carriers created under illumination in the intrinsic layer should reach the electrodes [3]. In the case that the thickness of the intrinsic layer is much larger than the diffusion length, not all carriers can reach the electrodes and, accordingly, a low efficiency results [4]. On the other hand, carriers which reach the electrodes without thermalizing do not contribute to the photocurrent and finally the efficiency of the solar cell is negatively affected. In order to avoid such an effect to a large extent, the thickness of the amorphous layers in a p/i/n solar cell must be conveniently chosen compared to the diffusion length of the carriers. Here it is aimed to determine the electron diffusion length. In order to achieve this goal, the photocurrent characteristics of an ITO/a-SiC:H(p-type)/a-Si:H/a-Si:H(n-type)/Pd structure was measured versus the photon energy at constant light intensity and constant temperature. In order to determine the electron diffusion length, the method of Agarwala and Tewary [5] was utilized.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Applied physics 36 (1985), S. 209-212 
    ISSN: 1432-0630
    Keywords: 73.40S
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract We developed a method for the determination of the minority carrier diffusion coefficient by means of the capacitance-voltage characteristics of a Schottky barrier. Capacitance-voltage-frequency characteristics were measured at room temperature and liquid nitrogen temperature. We adapted the diffusion capacitance concept ofp-n junction for the metal/semiconductor rectifier contact. We determined the minority carrier diffusion coefficient as 47–61 cm2/s.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1920
    Keywords: Thrombotic thrombocytopenic purpura ; Central nervous system ; White matter oedema ; Microangiopathy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We report a 75-year-old woman with thrombotic thrombocytopenic purpura (TTP) whose MRI showed diffuse abnormal signal in the deep white matter. She was successfully treated, and this abnormal signal disappeared. This finding indicates that the deep white matter is involved in TTP; the lesion may reflect reversible microangiopathy and brain oedema.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...