Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A cheap CO2 enrichment system was designed to perform continuous gas exchange measurements of branches of mature European beech trees (Fagus sylvatica L.). Branches were grown at ambient (350 cm3 m-3) and elevated CO2 (700cm3 m-3) during the whole 1992 leafy period. Leaks resulting from airtightness defaults in the system appeared to be low enough to measure accurately net CO2 assimilation and transpiration rates during the day. However, the CO2 exchange rates during the night (respiration) were too low to allow accurate measurements. Elevated CO2 had a great effect on the net assimilation rate of branches via its influence on both the C3 photosynthetic pathway and the shade-tolerance of beech trees (85% increase). The A/Ca curves showed no acclimation effect to high CO2, both control and enriched branches increasing their net assimilation in the same way. The decrease of net assimilation rates in mature leaves was similar for both control and enriched branches. The pattern of daily transpiration rates remained the same for both control and enriched branches, hence we can assume that there was no visible CO2 effect on stomata.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 12 (1989), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The present study investigates the relationships between nitrogen uptake, transpiration, and carbon assimilation. Plants growing on nutrient solution were enclosed for 10–16 d in a growth chamber, where temperature, photon flux density, vapour saturation deficit and CO2 concentration were controlled. One of these factors was modified every 4 to 5 d. Shoot photosynthesis and root and shoot respiration were recorded every half-hour. Nitrogen uptake from the root medium and plant transpiration were measured daily. In most cases, an increase in photon flux density led to increases in transpiration, net daily carbon assimilation, and nitrogen uptake. By modifying transpiration rate without changing photosynthesis (varying vapour saturation deficit), or by modifying transpiration and carbon assimilation in opposite ways (varying CO2 air concentration), it was shown that nitrogen uptake does not follow transpiration, but is linked to the carbon uptake of the plant. When light was increased from low to intermediate levels, the N uptake/C assimilation ratio remained constant. At higher photon flux density, this ratio declined markedly. It is proposed that in the first case, growth is limited by carbohydrate availability, thus any increase in carbon assimilation leads to a proportional increase in nitrogen uptake, in contrast to the second situation where carbohydrates may accumulate in the plant without further nitrogen requirement.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 12 (1989), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The objective of the present work was to study the effect of nitrogen deficiency on drought sensitivity of tall fescue plants. The authors compared photosynthetic and stomatal behaviour of plants grown at either high (8 mol m−3) or low (0.5 mol m−3) nitrogen levels during a drought cycle followed by rehydration. Other processes investigated were stomatal and non-stomatal inhibition of leaf photosynthesis, water use efficiency and leaf rolling. Plants were grown in pots in controlled conditions on expanded clay. A Wescor in situ hygrometer placed on the leaf base outside the assimilation chamber permitted, simultaneously to leaf gas exchange measurements, monitoring of leaf water potential. Drought was imposed by withholding water from the pot. CO2 uptake and stomatal conductance decreased and leaves started to roll at a lower leaf water potential in the high-N than in the low-N grown plants. Stomatal inhibition of leaf photosynthesis seemed larger in the low-N than in the high-N plants. Water-use efficiency increased more in the high-N than in the low-N grown plants during the drought. The decrease of photosynthesis was largely reversible after rehydration in low-N but not in high-N leaves. The authors suggest that low-N plants avoid water deficit rather than tolerate it.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 1 (1978), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. A model for the distribution of radiation incident on leaves in an isolated apple tree is presented. The simulated area of shadow cast by a tree compared well with measured values. The radiation model is combined with leaf models of photosynthesis and stomatal behaviour to simulate diurnal variations in the exchanges of carbon dioxide and water by the tree. Satisfactory correspondence was obtained when observed rates of transpiration and photosynthesis were compared with simulations. Further simulations indicated the diurnal patterns of transpiration and photosynthesis to be expected for trees with various shapes and leaf areas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Global change biology 2 (1996), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We show that sapflow is a useful tool for studies of water fluxes in forest ecosystems, because (i) it gives access to the spatial variability within a forest stand, (ii) it can be used even on steep slopes, and (iii) when combined with eddy correlation measurements over forests, it allows separation of individual tree transpiration from the total water loss of the stand. Moreover, sapflow techniques are quite easy to implement.Four sapflow techniques currently coexist, all based on heat diffusion in the xylem. We found a good agreement between three of these techniques. Most results presented here were obtained using the radial flow meter (Granier 1985).Tree sapflow is computed as sap flux density times sapwood area. To scale up from trees to a stand, measurements have to be made on a representative sample of trees. Thus, a number of trees in each circumference class is selected according to the fraction of sapwood they represent in the total sapwood area of the stand. The variability of sap flux density among trees is usually low (CV. 10–15%) in close stands of temperate coniferous or deciduous forests, but is much higher (35–50%) in a tropical rain forest. It also increases after thinning or during a dry spell.A set of 5–10 sapflow sensors usually provides an accurate estimate of stand transpiration. Transpiration measured on two dense spruce stands in the Vosges mountains (France) and one Scot's pine plantation in the Rhine valley (Germany) showed that maximum rate was related to stand LAI and to local climate. Preliminary results comparing the sapflow of a stand of Pinus banksiana to the transpiration of large branches, as part of the BOREAS programme in Saskachewan, Canada showed a similar trend.For modelling purposes, tree canopy conductance (gc) was calculated from Penman-Monteith equation. In most experiments, calculated canopy conductance was dependent on global radiation (positive effect) and on vapour pressure deficit (negative effect) in the absence of other limiting factors. A comparison of the vapour pressure deficit response curves of gc for several tree species and sites showed only small differences among spruce, oak and pine forests when including understorey. Tropical rainforests exhibited a similar behaviour.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 82 (1991), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Rose (Rose hybrida cv. Madame G. Delbard) was micropropagated in vitro on agar at varying concentrations: 0, 4, 5.5, 6, 7.5, 8, 9 and 15 g l−1. Water status of the culture medium, leaf water potential, plant growth and propagation rate were investigated.Water potential of the medium was lincar function of agar concentration, and gel strength increased linearly from zero as agar concentration increased from 5 to 15 g l−1.Except for liquid medium, where shoot proliferation (total shoot number) was imparied by vitrification, fresh and dry weights and unmber of tatal shoots decreased linearly with increasing agar concentration. At low agar concentration, where water potential of the gelled medium was high, only few among numerous shoots that had attained a length of 〉0.3 cm were usable. Number of usable (elongated) shoots was significanly higher at a moderate level of agar, namely 7.5 g l−1. This can be explained in terms of the antagonistic actions of cytokinin and water on shoot elongation.At low agar concentration, leaf water potential and absolute water content were high. At high agar concentration, under gel water deficit, leaf water potential and absolute water content were low but an osmotic adjustment maintained turgor pressure. At moderate agar concentration, when the number of usable shoots was high, lower leaf turgor was found.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0168-9452
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...