Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 793 (1996), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4919
    Keywords: ischemic preconditioning of the myocardium ; equilibrium energetics of the myocardium ; sarcolemmal ATPases ; adaptation of ATPases to ischemia or hypoxia ; glycoprotein release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Ischemic preconditioning of the heart is referred as a manifest increase in tolerance of the myocardium to otherwise damaging ischemic insult, achieved by one or few consequent initial short exposures to ischemia, each followed by reperfusion of the ischemic area. Several mechanisms such as opening of collateral vessels, the action of catecholamines, inositol phosphates, G-proteins and/or adenosine; inhibition of mitochondrial ATPase, the effects of different endogenous protective substances like heat stress or shock proteins, etc., are believed to cooperate in the mechanism of induction of preconditioning or in maintaining its effect. The present study is an attempt to extend the present knowledge about preconditioning from two aspects: i.) the peculiarities of energy equilibrium in preconditioned myocardium including adaptation of cardiac sarcolemmal ATPases to ischemia and/or hypoxia, and ii) participation of a new endogenous cardioprotective substance in the mechanism of preconditioning. The energy equilibrium in preconditioning is characterized by adaptation of cardiac energy demands to the capacity of energy production and delivery decreased by anaerobiosis and is manifested by constant ratios between ATP, ADP, AMP and the sum of ADN. Principles are proposed that may enable a prediction and mathematical modelling of the balanced energetic state in the preconditioned myocardium. These principles are based on thermodynamics and involve besides others a more economic handling of ATP by sarcolemmal ATPases. The latter enzymes adapt themselves to lowered availability of ATP by decreasing besides their Vmax also their values of Km (increase in the affinity) for ATP and some of them even adjust their activation energy (the anaerobiosis-induced elevation of Ea.t. is missing). It was also revealed that during preconditioning several up to now not described shock proteins unlike proteins (also glycoproteins) are released from the myocardium into the coronary blood. When these proteins indicated as a HS fraction were isolated, partially purified and in concentrated form applied into the coronary circulation, they were capable to induce in preliminary experiments a cardioprotective effect resembling that of the ischemic preconditioning.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 176 (1997), S. 113-118 
    ISSN: 1573-4919
    Keywords: estradiol ; heart sarcolemma ; Na,K-ATPase ; protection of the heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Cardiovascular effects of estrogens and particularly that of estradiol involve protection of the heart against ischemia. These effects were believed to be mainly indirect, mediated via changes in the blood and blood vessels. In the present paper a direct action of estradiol on the heart is demonstrated. Estradiol stimulates (p 〈 0.001) the Na,K-ATPase activity of cardiac sarcolemmal membranes by stimulating in an allosteric manner, the activation of the enzyme by potassium. The latter activation involves also an increase in affinity to potassium of the potassium binding sites on the enzyme molecule, but remains without any effect on the capacity and KDvalue of specific ouabain binding to the Na,K-ATPase. Estradiol is also antagonizing the depression of Na,K-ATPase activity that may be caused by ischemia and it is stimulating (p 〈 0.01) the ouabain-sensitive uptake of 86Rb into the heart cells. Our results indicate, that in addition to the known indirect effects of estradiol on the heart, the hormone also stimulates the activity and improves the kinetics of interaction of cardiac sarcolemmal Na,K-ATPase with ATP as well as with Na+ and K+ ions. This direct action may also account for the cardioprotective effects of estradiol.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-4919
    Keywords: phosphodiesterase ; cytochemistry ; myocardium ; rat ; dog
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The localization of the membrane-bound cyclic 3′,5′-AMP phosphodiesterasein cardiac tissues of both, rat and dog was studied by cytochemical method.40 µm thick slices from glutaraldehyde fixed heart tissue wereincubated in the medium with cAMP as a substrate and Pb ions as a capturemetal of the reaction product. The cAMP-PDE activity in the rat ventriclewas only shown positive on the sarcolemma. Whereas, in canine ventriculartissue the cAMP-PDE activity in cardiomyocytes was shown on the sarcolemma,on the junctional sarcoplasmic reticulum and on subsarcolemmal cisternae.The results confirm differences in the localization of cAMP-PDE in dog andrat heart.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-4919
    Keywords: diabetic cardiomyopathy ; heart sensitivity to Ca2+ ; (Na,K)-ATPase ; protein glycation ; free radicals ; order parameters of sarcolemmal membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In diabetes the hearts exhibit impaired membrane functions, but also increased tolerance to Ca2+ (iCaT) However, neither the true meaning nor the molecular mechanisms of these changes are fully understood. The present study is devoted to elucidation of molecular alterations, particularly those induced by non-enzymatic glycation of proteins, that may be responsible for iCaT of the rat hearts in the stage of fully developed, but still compensated diabetic cardiomyopathy (DH). Insulin-dependent diabetes (DIA) was induced by a single i.v. dose of streptozotocin (45 mg.kg-1). Beginning with the subsequent day, animals obtained 6 U insulin daily. Glucose, triglycerides, cholesterol and glycohemoglobin were investigated in blood. ATPase activities, the kinetics of activation of (Na,K)-ATPase by Na+ and K+, further the fluorescence anisotropy of diphenyl-hexatriene as well as the order parameters of membranes in isolated heart sarcolemma (SL) were also investigated. In addition, the degree of glycation and glycation-related potency for radical generation in SL proteins were determined by investigating their fructosamine content. In order to study calcium tolerance of DH in a 'transparent' model, hearts were subjected to calcium paradox (Ca-Pa, 3 min of Ca2+ depletion; 10 min of Ca2+ repletion). In this model of Ca2+-overload, Ca2+ ions enter the cardiac cells in a way that is not mediated by receptors. Results revealed that more than 83% of the isolated perfused DH recovered, while the non-DIA control hearts all failed after Ca-Pa. DH exhibited well preserved SL ATPase activities and kinetics of (Na,K)-ATPase activation by Na+, even after the Ca-Pa. This was considered as a reason for their iCaT. Pretreatment and administration of resorcylidene aminoguanidine (RAG 4 or 8 mg.kg-1) during the disease prevented partially the pathobiochemical effects of DIA-induced glycation of SL proteins. DIAinduced perturbations in anisotropy and order parameters of SL were completely prevented by administration of RAG (4 mg.kg-1). Although, the latter treatment exerted little influence on the (Na,K)-ATPase activity, it decreased the calcium tolerance of the DH. Results are supporting our hypothesis that the glycation-induced enhancement in free radical formation and protein crosslinking in SL may participate in adaptive mechanisms that may be also considered as 'positive' and are responsible for iCaT of the DH.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4919
    Keywords: myocardial ischemia ; arrhythmias ; diabetes ; preconditioning ; rat heart
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Diabetic hearts are suggested to exhibit either increased or lower sensitivity to ischemia. Detrimental effects of prolonged ischemia can be attenuated by preconditioning, however, relatively little is known about its effects in the diseased myocardium. This study was designed to test the susceptibility to ischemia-induced arrhythmias and the effect of preconditioning in the diabetic heart. Rats were made diabetic with streptozotocin (45 mg/kg, i.v.). After 1 week, isolated Langendorff-perfused hearts were subjected to 30 min occlusion of LAD coronary artery without or with preceding preconditioning induced by one cycle of 5 min ischemia and 10 min reperfusion. Glycogen and lactate contents were estimated in the preconditioned and non-preconditioned hearts before and after ischemia. Diabetic hearts were more resistant to ischemia-induced arrhythmias: incidence of ventricular tachycardia (VT) decreased to 42% and only transient ventricular fibrillation (VF) occurred in 17% of the hearts as compared to the non-diabetic controls (VT 100% and VF 70% including sustained VF 36%; p 〈 0.05). Preconditioning effectively suppressed the incidence and severity of arrhythmias (VT 33%, VF 0%) in the normal hearts. However, this intervention did not confer any additional protection in the diabetic hearts. Despite higher glycogen content in the diabetic myocardium and greater glycogenolysis during ischemia, production of lactate in these hearts was significantly lower than in the controls. Preconditioning caused a substantial decrease in the accumulation of lactate in the normal hearts, whereby in the diabetic hearts, this intervention did not cause any further reduction in the level of lactate. In conclusion, diabetic rat hearts exhibit lower susceptibility to ischemic injury and show no additional response to preconditioning. Reduced production of glycolytic metabolites during ischemia can account for the enhanced resistance of diabetic hearts to ischemia as well as for the lack of further protection by preconditioning.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Soil Science Society of America journal 63 (1999), S. 290-296 
    ISSN: 1435-0661
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: + input into soils is increasing because alkaline dust emissions have been reduced since 1990. Our objectives were to examine (i) the metal release in H+ buffer reactions of Slovak soils and (ii) the impact of the proton buffering on heavy metal partitioning. We used 10 soils (pH 7.4-3.6) in a batch pHstat experiment. Released ions were adsorbed to an ion-exchange resin, while pH was kept constant. After reaction times of 10 min, 30 min, 1, 2, 4, 24, 48, and 96 h, soil and ion-exchange resin were separated and ions were extracted from the resin. After 0, 4, and 96 h, we determined metal concentrations in seven fractions. On average, the total release after 96 h (in percentage of the total concentration) decreased in the order: Cd (74) 〉 Pb (59) 〉 Cu (29) 〉 Zn (22) 〉 Ni (17) 〉 Cr (3.1), while the initial release rate into solution decreased in the order: Cd 〉 Zn 〉 Ni 〉 Cu 〉 Pb 〉 Cr. After 48 h, only the Cr release rate was lower than that of Cd. Particularly in less acid soils, Pb, Cu, Zn, and Cd released by the dissolution of oxides were adsorbed onto the soil matrix, explaining the slower decrease of the Pb and Cu release rates. The percentages of weakly bound heavy metals decreased more markedly during the titration than those of metals bound to Fe oxides. Increased H+ inputs into Slovak soils will cause enhanced metal release into soil solution.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...