Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1619-7089
    Keywords: Brain neoplasms ; Amino acids ; Iodine-123-α-methyl tyrosine ; Radionuclide imaging ; Single-photon emission tomography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Using single-photon emission tomography (SPET), the radiopharmaceuticall,-3-iodine-123-α-methyl tyrosine (IMT) has been applied to the imaging of amino acid transport into brain tumours. It was the aim of this study to investigate whether IMT SPET is capable of differentiating between high-grade gliomas, low-grade gliomas and non-neoplastic brain lesions. To this end, IMT uptake was determined in 53 patients using the triple-headed SPET camera MULTISPECT 3. Twenty-eight of these subjects suffered from high-grade gliomas (WHO grade III or IV), 12 from low-grade gliomas (WHO grade II), and 13 from non-neoplastic brain lesions, including lesions after effective therapy of a glioma (five cases), infarctions (four cases), inflammatory lesions (three cases) and traumatic haematoma (one case). IMT uptake was significantly higher in high-grade gliomas than in low-grade gliomas and non-neoplastic lesions. IMT uptake by low-grade gliomas was not significantly different from that by non-neoplastic lesions. Diagnostic sensitivity and specificity were 71% and 83% for differentiating high-grade from low-grade gliomas, 82% and 100% for distinguishing high-grade gliomas from non-neoplastic lesions, and 50% and 100% for discriminating low-grade gliomas from non-neoplastic lesions. Analogously to positron emission tomography with radioactively labelled amino acids and fluorine-18 deoxyglucose, IMT SPET may aid in differentiating high-grade gliomas from histologically benign brain tumours and non-neoplastic brain lesions; it is of only limited value in differentiating between non-neoplastic lesions and histologically benign brain tumours.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1619-7089
    Keywords: Brain neoplasms ; Positron emission tomography ; Single-photon emission tomography ; Fluorine-18 fluorodeoxyglucose ; Iodine-123-α-methyl tyrosine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Use of iodine-123-α-methyl tyrosine (123I-IMT) allows investigation of the amino acid transport rate in gliomas. It was the aim of this study to compare the value of measurement of glucose metabolism with that of measurement of123I-IMT uptake for the non-invasive grading of brain tumours. The study population comprised 23 patients with histopathologically proven primary brain tumours; 14 had high-grade gliomas, and nine low-grade brain neoplasms. Glucose metabolism was studied using an ECAT EXACT 47 positron emission tomography (PET) camera and fluorine-18 fluorodeoxyglucose (18F-FDG);123I-IMT uptake was measured with the triple-headed single-photon emission tomography (SPET) camera, MULTISPECT 3.18F-FDG and123I-IMT uptake was quantified as ratios between the uptake by the tumour and contralateral regions of reference. Glucose metabolism and amino acid uptake of the brain tumours correlated significantly (r=0.71,P 〈0.001). Assuming discrimination thresholds between high-grade and low-grade tumours of 0.8 for18F-FDG uptake and 1.8 for123I-IMT uptake, the accuracy values of18F-FDG PET and123I-IMT SPET for differentiating between high-grade and low-grade tumours were 21/23 (91%) and 19/23 (83%), respectively. The difference in diagnostic performance was not significant on receiver operating characteristic analysis (P 〉0.4). It is concluded that there is no major difference between the PET investigation of glucose metabolism and the less expensive SPET measurement of amino acid uptake in terms of their accuracy in evaluating the malignancy grade of primary brain tumours. This encourages the performance of further studies to analyse the potential impact of123I-IMT SPET on the therapeutic management of patients with brain tumours.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1619-7089
    Keywords: Key words: Brain neoplasms ; Positron emission tomography ; Single-photon emission tomography ; Fluorine-18 fluorodeoxyglucose ; Iodine-123-α-methyl tyrosine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. Use of iodine-123-α-methyl tyrosine (123I-IMT) allows investigation of the amino acid transport rate in gliomas. It was the aim of this study to compare the value of measurement of glucose metabolism with that of measurement of 123I-IMT uptake for the non-invasive grading of brain tumours. The study population comprised 23 patients with histopathologically proven primary brain tumours; 14 had high-grade gliomas, and nine low-grade brain neoplasms. Glucose metabolism was studied using an ECAT EXACT 47 positron emission tomography (PET) camera and fluorine-18 fluorodeoxyglucose (18F-FDG); 123I-IMT uptake was measured with the triple-headed single-photon emission tomography (SPET) camera, MULTISPECT 3. 18F-FDG and 123I-IMT uptake was quantified as ratios between the uptake by the tumour and contralateral regions of reference. Glucose metabolism and amino acid uptake of the brain tumours correlated significantly (r=0.71, P 〈0.001). Assuming discrimination thresholds between high-grade and low-grade tumours of 0.8 for 18F-FDG uptake and 1.8 for 123I-IMT uptake, the accuracy values of 18F-FDG PET and 123I-IMT SPET for differentiating between high-grade and low-grade tumours were 21/23 (91%) and 19/23 (83%), respectively. The difference in diagnostic performance was not significant on receiver operating characteristic analysis (P 〉0.4). It is concluded that there is no major difference between the PET investigation of glucose metabolism and the less expensive SPET measurement of amino acid uptake in terms of their accuracy in evaluating the malignancy grade of primary brain tumours. This encourages the performance of further studies to analyse the potential impact of 123I-IMT SPET on the therapeutic management of patients with brain tumours.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1619-7089
    Keywords: Key words: Recurrent glioma ; Grading ; Fluorine-18 fluorodeoxyglucose ; l-3-[123I]iodo-α-methyltyrosine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract . Based on the results of stereotactic biopsy, we evaluated in a prospective fashion the efficiency of l-3-[123I]iodo-α-methyltyrosine-single-photon emission tomography (SPET) and [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET) in the detection and grading of recurrences in patients previously treated for gliomas. The patient population comprised 30 individuals, nine with astrocytomas of grade II, ten with astrocytomas of grade IV, three with oligoastrocytomas of grade II, six with oligodendrogliomas of grade II and two with anaplastic oligodendrogliomas of grade III) suspected of recurrence and scheduled for further treatment. IMT SPET data were acquired using either by dual-or a triple-headed SPET camera, Multispect 2/3. FDG uptake was measured with an ECAT ART PET camera. Two independent observers classified PET and SPET images as positive or negative for tumour tissue. Uptake of FDG and IMT was evaluated visually and, in the case of IMT, also quantitatively by calculating the ratios between tracer accumulation in the lesion and the unaffected contralateral regions of reference using the region of interest (ROI) technique. The PET and SPET results were compared with the histopathological findings obtained either by stereotactic biopsy or in one case by open surgery. Glucose metabolism and amino acid uptake of recurrences of brain tumours as assessed by FDG-PET and IMT-SPET correlated highly with the histopathological findings. Based on the histopathological data, FDG-PET and IMT-SPET findings confirmed recurrence in all cases of high-grade gliomas (IV). A difference could be demonstrated in low-grade (II–III) tumour recurrences. True-positive IMT-SPET results were found in 86% of grade III and 75% of grade II recurrences, whereas FDG-PET yielded a sensitivity of 71% in tumours of grade III and 50% in those of grade II. With respect to the grade of malignancy of brain tumours at recurrence, IMT-SPET, in contrast to FDG-PET, does not permit adequate in vivo grading of non-mixed brain tumours of astrocytic or oligodendroglial origin. However, in this study FDG-PET did not permit discrimination between upgrading of low-grade oligoastrocytomas (II) into anaplastic oligodendrogliomas (III) and upgrading into glioblastomas (IV) The results of this study indicate that FDG-PET and IMT-SPET are equivalent to stereotactic biopsy in their ability to identify high-grade tumours at recurrence. IMT-SPET proved to be superior to FDG-PET in confirming low-grade recurrences. In the case of suspected progression of the grade of malignancy in ordinary gliomas, FDG-PET correlated significantly with the histopathological grading, whereas IMT-SPET did not. However, tumour grading by FDG-PET has a limitation in mixed brain tumours in that it is not possible to discriminate between progression of the oligo- versus the astrocytic tumour entity. In this case histopathological evaluation of the tumour grade remains necessary.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1619-7089
    Keywords: Single-photon emission tomography Iodine-123-labelled amino acids Amino acid transport Cerebral glioma
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract. In developing iodine-123-labelled amino acid derivatives for imaging cerebral gliomas by single-photon emission tomography (SPET), we compared p-[123I]iodo-l-phenylalanine (IPA), l-[123I]iodo-1,2,3,4-tetrahydro-7-hydroxyisoquinoline-3-carboxylic acid (ITIC) and l-3-[123I]iodo-α-methyltyrosine (IMT) with regard to their uptake in human glioblastoma T99 and T3868 cells, and thereafter studied the mechanisms promoting the cellular uptake. The potential of the 123I-iodinated agents for use as SPET radiopharmaceuticals was evaluated in healthy experimental rats as well as in rats with stereotactically implanted C6 gliomas. The radiopharmaceutical uptake into glioblastoma cells was rapid, temperature and pH dependent, and linear during the first 5 min. Equilibrium was reached after 15–20 min, except in the case of ITIC, the initial uptake of which gradually decreased from 15 min onwards. The radioactivity concentration in glioma cells following 30-min incubation at 37°C (pH 7.4) varied from 11% to 35% of the total activity per million cells (ITIC 〈 IMT ≤ IPA). Competitive inhibition experiments using α-(methylamino)-isobutyric acid and 2-amino-2-norbornane-carboxylic acid, known as specific substrates for systems A and L, respectively, as well as representative amino acids preferentially transported by system ASC, indicated that IPA, like IMT, is predominantly mediated by the L and ASC transport systems, while no significant involvement of the A transport system could be demonstrated. By contrast, none of the three principal neutral amino acid transport systems (A, L and ASC) appear to be substantially involved in the uptake of ITIC into glioblastoma cells. Analysis of uptake under conditions that change the cell membrane potential, i.e. in high K+ medium, showed that the membrane potential plays an important role in ITIC uptake. Alteration of the mitochondrial activity by means of valinomycin or nigericin induces a slight increase or decrease in the radiopharmaceutical uptake, suggesting a minor contribution of the mitochondria in the uptake. IPA, IMT and ITIC passed the blood-brain barrier, and thereafter showed efflux from the brain. The radioactivity concentration in healthy rat brain 15 min following intravenous injection varied from 0.07% (ITIC) to 0.27% ID/g (IPA). In comparison, the brain uptake in the stereotactically implanted C6 glioma rats was substantially higher (up to 1.10% ID/g 15 min p.i.), with tumour-to-background ratios greater than 4. These data indicate that IPA and ITIC, like IMT, exhibit interesting biological characteristics which hold promise for in vivo brain tumour investigations by SPET.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Helvetica Chimica Acta 75 (1992), S. 1639-1650 
    ISSN: 0018-019X
    Keywords: Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The synthesis of 4-(methylthio)-1H-imidazo[4,5-c]pyridine 2′-deoxy-β-D-ribonucleosides 2 and 9 and the conversion of the N1-isomer 2 into the 2′,3′-didehydro-2′,3′-dideoxyribonucleoside 3a or (via 7) 3-deaza-2′-deoxyadenosine (1) is described. Phosphonate building blocks of 1 were employed in solid-phase synthesis of self-complementary base-modified oligonucleotides. Their properties were studied with regard to duplex stability and hydrolysis by the restriction enzyme Eco RI.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...