Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Chemistry of materials 5 (1993), S. 1434-1438 
    ISSN: 1520-5002
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Advanced Materials 6 (1994), S. 417-421 
    ISSN: 0935-9648
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 5 (1994), S. 98-104 
    ISSN: 1042-7147
    Keywords: Photopolymerization system ; Microgel ; High sensitivity ; Heterogeneous matrix ; Quaternary ammonium ion ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: A series of crosslinked microgels with quaternary ammonium ions on the surface was prepared by quaternization with N,N-dimethylbenzylamine in the presence of microgel particles prepared by emulsion copolymerization of styrene (St), chloromethylstyrene (CMS) and divinylbenzene (DVB). Microgels with diameters in the range of 15-100 nm were successfully dispersed in organic solvents such as 2-methoxyethanol and 2-ethoxyethanol without an emulsifier. A photosensitive layer was formed by coating a photosensitive solution on a grained aluminum plate. The solution was comprised of the microgels, the multifunctional monomer and standard ultraviolet (UV) photoinitiators, such as 2,4-diethyl thioxanthone (DETX)/ethyl p-di-ethylaminobenzoate (EPA). This gave a heterogeneous photosensitive layer which produced good polymer patterns after exposure to UV light followed by development in tap water. A typical polymer layer, consisting of the microgels (poly(styrene-co-N,N-dimethylbenzylvinyl-benzylammonium chloride-co-divinylbenzene)), DETX/EPA, and the multifunctional acrylate monomers, exhibited photosensitivity of 0.06 mJ/cm2 for UV light. This sensitivity is much higher than the homogeneous photopolymerization system with an analogous composition.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Polymers for Advanced Technologies 5 (1994), S. 297-308 
    ISSN: 1042-7147
    Keywords: Photopolymerization ; Functional microgel ; Vinyl group ; High sensitivity ; Quaternization ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Three types of functional microgels with vinyl groups on their surface were prepared. For the first type, the counter anion from clorin was exchanged with β-methacryloylethyl sulfonic acid, styrene sulfonic acid or allyl sulfonic acid in a microgel with ammonium anions. For the second and third types, a quaternization with N,N-dimethylaminoethyl methacrylate of 3-chloro-2-hydroxypropyl methacrylate in the presence of microgel particles was prepared by emulsion copolymerization of styrene, chloromethylstyrene or N,N-dimethylamino-methylbenzene, and divinylbenzene. The resulting samples show good dispersibility in organic solvents without an emulsifier.A functional microgel-based photopolymer combined with an acrylate monomer and ultraviolet (UV) or visible (VIS) light-absorbing photoinitiators provides oleophilic images when exposed to UV or VIS light and developed in tap water. This photopolymer has a higher sensitivity than those of photopolymers based on microgels with an analogous composition but without vinyl groups. Photopolymers pepared by using functional microgels with a methacryloyl group exhibited a higher rate of polymerization (Rp) than that of photopolymers based on microgels without a vinyl group. The Rp of photopolymers prepared by using a functional microgel with either an allyl group or vinylphenyl group was nearly equal to that of photopolymers based on microgels with ammonium ions. Their high sensitivities are attributed to the rapid photopolymerization in the methacryloyl group.To determine how the photoreaction mechanism enhances sensitivity, the photoreaction products were investigated using a model photopolymerization system. It was found that the gelation reactions enhancing sensitivity are predominantly the polymerization and crosslinking ones when a microgel with the methacryloyl group is used, and the graft copolymerization with acrylate monomers when a microgel with either the allyl group or vinylphenyl group is used.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...