Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Light-induced phase shifts of circadian rhythmic locomotor activity are associated with the expression of c-Jun, JunB, c-Fos and FosB transcription factors in the rat suprachiasmatic nucleus, as shown in the present study. In order to explore the importance of c-Fos and JunB, the predominantly expressed AP-1 proteins for the phase-shifting effects of light, we blocked the expression of c-Fos and JunB in the suprachiasmatic nucleus of male rats, housed under constant darkness, by intracerebroventricular application of 2 μ1 of 1 mM antisense phosphorothioate oligodeoxynucleotides (ASO) specifically directed against c-fos and JunB mRNA. A light pulse (300 lux for 1 h) at circadian time 15 induced a significant phase shift (by 125 ± 15 min) of the circadian locomotor activity rhythm, whereas application of AS0 6 h before the light pulse completely prevented this phase shift. Application of control nonsense oligodeoxynucleotides had no effect. ASO strongly reduced the light-induced expression of c-Fos and JunB proteins. In contrast, light pulses with or without the control nonsense oligodeoxynucleotides evoked strong nuclear c-Fos and JunB immunoreactivity in the rat suprachiasmatic nucleus. These results demonstrate for the first time that inducible transcription factors such as c-Fos and JunB are an essential part of fundamental biological processes in the adult mammalian nervous system, e.g. of light-induced phase shifts of the circadian pacemaker.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Anatomy and embryology 169 (1984), S. 111-118 
    ISSN: 1432-0568
    Keywords: Intralaminar thalamic nuclei ; Cortical projection ; Marmoset ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In the marmoset (Callithrix jacchus), HRP and 3H-apo-HRP were injected into various cortical regions and the positions of labelled neurons in the non-specific, intralaminar thalamic nuclei (N. centralis and centre médian) were investigated. Although neuron populations projecting to the different cortical regions overlap widely, a coarse topology exists inasmuch as intralaminar neurons projecting to the posterior cortex were located more rostrally and those projecting to the anterior cortex were located more caudally in the intralaminar complex. With injections into nearby cortical regions of the parieto-temporal association cortex with HRP and 3H-apo-HRP, respectively, no double labelled cells were found in the intralaminar nuclei, although the fields of labelled cells completely overlapped. Also in the specific projection nuclei no double labelled cells were encountered. About 10–20% of the thalamo-cortical projection cells are located in the intralaminar nuclei. Some functional aspects of this second thalamo-cortical projection system are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1106
    Keywords: Thalamo-cortical connections ; Topology ; Development ; Specific and intralaminar thalamic nuclei ; Primate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary This paper addresses the question of a general topological principle of thalamo-cortical projections. In the lissencephalic primate brain of the common marmoset (Callithrix jacchus), large injections of horseradish peroxidase were made in various parts of the neocortex. These injections were placed in different animals and hemispheres along various caudo-rostral and mediolateral gradients. Labelled cells in the thalamus were plotted and the labelling-zones resulting from several injections along a medio-lateral and two caudo-rostral cortical vectors were drawn into semi-schematic thalamic maps. These composite maps reveal a topological organization of the whole thalamo-cortical projection. The thalamic representation of the caudo-rostral and mediolateral gradients indicate a rotation of the posterior relative to the anterior thalamus. An attempt is made to relate the organization of the thalamo-cortical projection to the development of the thalamus and the cortex. The cortex is divided into concentric zones around the sensory-motor and insular cortex. The thalamus is divided into corresponding projection zones. The topology of thalamo-cortical connections can then be regarded as a consequence of corresponding thalamic and cortical growth gradients. This is not only consistent with the general thalamo-cortical topology and the inversion of maps from thalamus to cortex, but also explains the continuity and overlap of thalamic projection zones in the pulvinar to widely separated cortical areas as the parietal, temporal and frontal association cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-1106
    Keywords: Sodium channel ; mRNA expression ; Development ; In situ-hybridization ; Rat brain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution of mRNA expression for three types of voltage gated neuronal sodium-channels was studied in the rat brain at different developmental stages (embryonal day E18, postnatal day P5 and adult). With the in-situ hybridization technique, using synthetic DNA-oligomer probes, pronounced regional and temporal variations in the expression levels of the different channel subtypes could be detected. In comparison with types I and III, sodium channel II mRNA was the most abundant subtype at all developmental stages. Maximal expression of sodium channel II mRNA was seen at P5 in virtually all parts of the grey matter, except for the cerebellum. In adult rat brain in contrast, sodium channel II mRNA levels were maximal in the granular layer of the cerebellum, whereas in all other regions expression had decreased to roughly 50% of postnatal levels. Na channel I expression was virtually absent at E18 and showed highest levels at P5, with maxima in the caudate nucleus and hippocampus. In the adult brain, expression of Na-channel I was nearly absent in the neocortex, but well detectable in the cerebellum and, at lower levels in the striatum and thalamus. Sodium channel III was mainly expressed at the embryonal stage and showed a decrease to very low levels with little regional preferences in the adult.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...