Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-9729
    Keywords: aircraft deicing fluids ; anaerobic degradation ; methane ; propylene glycol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Intermediates formed during the anaerobic decomposition of propylene glycol under methanogenic conditions were studied using a serum bottle technique. The pathway is similar to the anaerobic decomposition of ethylene glycol as previously reported. For both compounds, the decomposition is believed to proceed via an initial disproportionation of the glycol to form equal molar amounts of the volatile fatty acid and normal alcohol of the same chain length. In the case of ethylene glycol, disproportionation results in the formation of acetate and ethanol, while disproportionation of propylene glycol produces propionate and n-propanol. Following disproportionation, the alcohols produced from glycol fermentation are oxidized to their corresponding volatile fatty acid with the reduction of protons to form hydrogen. Ethanol and propionate oxidation to acetate proceeds via a well-established syntrophic pathway that is favorable only under low hydrogen partial pressures. Subsequent degradation of acetate proceeds via acetoclastic methanogenesis with the production of carbon dioxide and methane. Despite the production of hydrogen in the initial steps of glycol degradation, both compounds are completely degradable under the methanogenic conditions tested in this study.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 14 (1968), S. 986-988 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...