Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Diversification of bacterial species and pathotypes is largely caused by horizontal transfer of diverse DNA elements such as plasmids, phages and genomic islands (e.g. pathogenicity islands, PAIs). A PAI called high-pathogenicity island (HPI) carrying genes involved in siderophore-mediated iron acquisition (yersiniabactin system) has previously been identified in Yersinia pestis, Y. pseudotuberculosis and Y. enterocolitica IB strains, and has been characterized as an essential virulence factor in these species. Strikingly, an orthologous HPI is a widely distributed virulence determinant among Escherichia coli and other Enterobacteriaceae which cause extraintestinal infections. Here we report on the HPI of E. coli strain ECOR31 which is distinct from all other HPIs described to date because the ECOR31 HPI comprises an additional 35 kb fragment at the right border compared to the HPI of other E. coli and Yersinia species. This part encodes for both a functional mating pair formation system and a DNA-processing region related to plasmid CloDF13 of Enterobacter cloacae. Upon induction of the P4-like integrase, the entire HPI of ECOR31 is precisely excised and circularised. The HPI of ECOR31 presented here resembles integrative and conjugative elements termed ICE. It may represent the progenitor of the HPI found in Y. pestis and E. coli, revealing a missing link in the horizontal transfer of an element that contributes to microbial pathogenicity upon acquisition.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 230 (2004), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: To identify novel virulence-associated genes in uropathogenic Escherichia coli (UPEC) strains, a suppression subtractive hybridization strategy was applied to genomic DNA of four clinical UPEC isolates from patients suffering from cystitis or pyelonephritis. The genomic DNA of four isolates (tester strains) was subtracted from the DNA of two different driver strains, the well characterized UPEC strain CFT073 and the non-pathogenic E. coli K-12 strain MG1655. We determined the sequence of 172 tester strain-specific DNA fragments, 86 of which revealed only low or no homology to nucleotide sequences of public databases. We further determined the virulence association of the 86 novel DNA fragments using each DNA fragment as a probe in Southern hybridizations of a reference strain collection consisting of 60 extraintestinal pathogenic E. coli isolates, and 40 non-virulent E. coli strains from stool samples. From this, 19 novel DNA fragments were demonstrated to be significantly associated with virulent strains and thus may represent new virulence traits. Our results support the idea of a considerable genetic variability among UPEC strains and suggest that novel genomic determinants might contribute to virulence of UPEC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    FEMS microbiology letters 179 (1999), S. 0 
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The high-pathogenicity island (HPI) of virulent Yersiniae consists of (i) a functional core encoding for biosynthesis and uptake of the siderophore yersiniabactin and (ii) a 5- to 13-kb AT-rich region of unknown function. This Yersinia HPI has been shown to be widely distributed among different pathotypes of Escherichia coli. In this study, the insertion site of the HPI was defined in three different E. coli strains: The enteroaggregative E. coli (EAggEC) strain 17-2, the uropathogenic (UPEC) E. coli strain 536, and the probiotic E. coli DSM6601. We demonstrated that in all three E. coli isolates the HPI is associated with the asnT tRNA (5′-extremity) and truncated in the AT-rich region (3′-extremity) since the 17-bp direct repeat (DR) of the asn tRNA that flanks the HPI in Yersinia is missing in E. coli. Moreover, in comparison to the HPI-negative E. coli K-12 strain, a uniform deletion must have taken place in the E. coli chromosome adjacent to the 3′-border of the HPI.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract The structural genes encoding the Yop proteins of Yersinia enterocolitica are scattered around on the virulence plasmid (pYV). The genes which are required for transactivation, secretion and translocation of the Yops are encoded in one cluster known as the lcr-region of pYV. After the introduction of an additional SalI restriction site into pYV of Y. enterocolitica serotype O8, we were able to clone and isolate the whole lcr-region on the mobilizable low copy vector pSUP102. Analysis of this construct in a plasmidless WA-strain showed that all Yops being encoded inside the lcr-region (YopN, YopB, YopD and the V-antigen) were secreted into the culture supernatant. Moreover, this lcr-fragment was able to promote secretion of other Yops encoded by a second recombinant plasmid. Thus the translocation and function of single Yops can be studied.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1831
    Keywords: Key words In situ hybridisation ; rRNA ; Streptococcus pyogenes ; Necrotising fasciitis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Fluorescence in situ hybridisation (FISH) targeted to ribosomal RNA is well established for studies in environmental microbiology. Initial applications of this technique in the field of medical microbiology showed that FISH is also a suitable means for the rapid, reliable and cultivation-independent identification of bacterial pathogens. In particular, for infectious diseases that follow a fulminant live-threatening course, such as sepsis or necrotising fasciitis (NF), a fast and reliable detection technique is of great importance. This study describes the development of an rRNA-targeted oligonucleotide set covering more than 95% of the pathogens associated with NF. These probes were tested with a broad collection of target and non-target organisms and found to be highly specific. Subsequently, the FISH approach was applied for the direct detection of bacterial pathogens in clinical samples. Two cases of NF and one case of streptococcal toxic shock syndrome (STSS) were analysed. FISH correctly identified almost all pathogens present in the samples examined within 2–3 h. However, Proteus mirabilis, which was identified in one sample by conventional methods was detected as a rod-shaped bacteria but could not be identified by FISH, since no specific probe was available for this particular organism. In contrast, identification of pathogens in these samples by conventional laboratory methods took 48–72 h. Furthermore, in one patient with pre-sampling antimicrobial therapy bacteria could not be grown from any of the samples. FISH unequivocally revealed the presence of Streptococcus pyogenes in affected tissue samples from this patient. In an experimental setting we demonstrated that FISH readily identifies S. pyogenes cells rendered non-cultivable by antibiotic treatment. Thus, FISH holds great promise for rapid identification of pathogens in fulminant infections such as NF, particularly in cases when pre-sampling antimicrobial therapy hampers culture of the causative agent.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...