Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of mathematical biology 42 (1980), S. 461-480 
    ISSN: 1522-9602
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Mathematics
    Notes: Abstract Models of the human respiratory tract were developed based on detailed morphometric measurements of a silicone rubber cast of the human tracheobronchial airways. Emphasis was placed on the “Typical Path Lung Model” which used one typical pathway to represent a portion of the lung, such as a lobe, or to represent the whole lung. The models contain geometrical parameters, including airway segment diameters, lengths, branching angles and angles of inclination to gravity, which are needed for estimating inhaled particle deposition. Aerosol depositions for various breathing patterns and particle sizes were calculated using these lung models and the modified Findeisen-Landahl computational scheme. The results agree reasonably well with recent experimental data. Regional deposition, including lobar deposition fractions, are also calculated and compared with results based on the ICRP lung deposition model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Models of the lung airways of a rat were developed from complete measurements of the tracheobronchial airways. A silicone rubber cast of the tracheobronchial airways of a rat lung was prepared and all individual airway segments down to and including the terminal bronchioles were measured to obtain the segment diameters, lengths, branching angles and angles of inclination to gravity. Models of the rat tracheobronchial airways were constructed based on the original measurements and the subsequent analysis. Some mathematical assumptions about acinar anatomy distal to terminal bronchioles were made to extend the models to include pulmonary regions. Emphasis was placed on the “Typical Path Lung Model” which used one typical pathway to represent either a whole lung or a lobe of the lung. The models are simple and can be applied in calculation of physiologic variables or particle deposition during inhalation in various lobes of the lung.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0003-276X
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Quantitative anatomical descriptions (morphometry) of the tracheobronchial airways are of importance in many applications including the preparation of successful mathematical models describing airflow patterns and deposition patterns of airborne particles in the lung. Morphometric data are also useful in studies of comparative anatomy and in describing normal and diseased states of an organ. The collection of such data is aided by the use of idealized models of airway branches of the tracheobronchial airways. Morphometric measurements from the lungs of several mammalian species are presented using a model that consists of three connected tubular segments. The morphometric model uniquely defines an identification number for each branch segment, a branching angle, an airway segment length and diameter, an inclination of a segment to gravity and the degree of alveolarization of each segment. Designed to be compatible with computerized data handling, the model is unambiguous and realistic, but flexible so that anomalous anatomical structures can be classified and noted. Morphometric data describing the variation of structure with depth in the tracheobronchial airways are presented in the form of graphical representations of anatomical measurements on replica casts of the human, dog, rat and hamster airways. These distributions describe the anatomical character of the tracheobronchial airways concisely, quantitatively, and characteristically for each species.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...