Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-7241
    Keywords: essential phospholipids ; nicotinic acid ; hyperlipoproteinemia type IIb ; ischemic heart disease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary In patients with moderate, dietary noncorrigible hyperlipoproteinemia type IIb and ischemic heart disease, treatment with nicotinic acid is limited by the side effects of the drug. In 100 patients, 6-month treatment with nicotinic acid (n=50) or “essential” phospholipids (EPL); Lipostabil®, manufacturer: Rhône-Poulenc Rorer) (n=50) indicated comparable efficacy for both substances: Significant (p〈.001) reductions of serum total cholesterol, low-density lipoprotein (LDL) cholesterol, and triglyceride values were similar in both groups, while nicotinic acid increased high-density lipoprotein (HDL) cholesterol significantly (p〈.01) better than Lipostabil. A detailed analysis of ultracentrifugal lipoprotein profiles, hydroperoxide concentrations in LDL, and cholesterol-accepting properties of HDL in a small number of Lipostabil- and nicotinic acid-treated patients revealed favorable shifts in the lipoprotein profile, significant (p〈.05) reductions of LDL hydroperoxides, and favorable increases of the most antiatherogenic HDL2b subfraction only in the Lipostabil-treated group. Clinically, both medications reduced the intensity and number of angina pectoris attacks per week (p〈.05), but only Lipostabil-treated patients significantly (p〈.05) increased their working capacity in the veloergometric test. Since in the nicotinic acid-treated group dropouts (nine patients, eight related to the drug) and side effects [14] exceeded those in the Lipostabil-treated group (two dropouts not related to the drug, no side effects), it is suggested that Lipostabil is a preferable alternative in the treatment of patients with moderate, dietary noncorrigible hyperlipoproteinemia IIb and ischemic heart disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Chemie Ingenieur Technik - CIT 64 (1992), S. 1109-1112 
    ISSN: 0009-286X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0263-6484
    Keywords: polyenoylphosphatidylcholine ; liver structure, lipids ; pancreatic structure ; pancreatic islets ; β-cells ; ranules ; alloxan ; experimental diabetes ; liver damage ; glucose content ; Life Sciences ; Molecular Cell Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Polyenoylphosphatidylcholine (PPC: 100 or 300 mg kg-1 b.w., by gastric intubation for 30 days) produced a clearcut protection of the liver of rats treated with alloxan (150 mg kg-1 b.w., i.p.). The liver of rats treated with alloxan was characterized by hydropic dystrophy and lymphocytic infiltrations. Treatment with alloxan increased serum γ-GT and ALAT activities. The liver structure of rats treated with PPC did not differ from the liver of control animals. PPC normalized the biochemical abnormalities caused by the diabetes. The number of pancreatic islets and β/α; cell ratio decreased in the diabetic rats. A number of β-cells in this group did not contain granules. PPC prevented the decrease in the number of islets and the β/α; cell ratio in the pancreas of the diabetic rats. The intensity of staining of β-cell granules in the pancreas of PPC-treated rats had a position intermediate between the control and diabetic groups. Alloxan increased the blood glucose content where treatment with PPC decreased this. The results suggest that PPC acts as a cytoprotector in the liver and pancreas of rats with experimental diabetes induced by alloxan.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...