Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of mammalian evolution 5 (1998), S. 1-32 
    ISSN: 1573-7055
    Keywords: Archaeopteropus ; calcar ; Chiroptera ; hindlimb morphology ; Megachiroptera ; Microchiroptera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Most researchers have considered the calcar to be a unique and homologous structure within Chiroptera (e.g., the presence of this structure and its associated musculature has been cited as a synapomorphy supporting bat monophyly). However, we report that significant morphological variation exists between Microchiroptera and Megachiroptera. In microchiropterans, a calcified or cartilaginous element articulates directly with the calcaneal tuberosity of the ankle and projects into the uropatagium. In megachiropterans, a cartilaginous structure projects from the tendon of the gastrocnemius muscle into the uropatagium and has no articulation with the calcaneal tuberosity. Considerable variation also exists in the musculature associated with these structures. Phylogenetic interpretation of hindlimb morphology of extant and fossil taxa indicates that the calcar may not be homologous in all bats. We suggest retention of the term “calcar” for the microchiropteran structure and propose a new term, “uropatagial spur,” for the megachiropteran structure. The fossil bat Archaeopteropus transiens (Oligocene) has long been presumed to be a megachiropteran; however, this form has a microchiropteran-type calcar. Reconsideration of morphological evidence from this and previous studies indicates that Archaeopteropus is not a megachiropteran but, rather, a basal member of the microchiropteran lineage.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The vampire bat pectoralis muscle contains at least four fiber types distributed in a nonhomogeneous pattern. One of these fiber types, here termed IIe, can be elucidated only by adenosine triphosphatase (ATPase) histochemistry combined with reactions against antifast and antislow myosin antibodies. The histochemical and immunohistochemical observations indicate a well-developed specialization of function within specific regions of the muscle. In parallel, analyses of native myosin isoforms and myosin heavy chain isoforms indicate two points. First, the histochemical “type IIe” fiber is predominant in cranial portions of the muscle, and myosin extracted from these regions exhibits a unique electrophoretic mobility not observed in the myosin isoforms of more traditional laboratory mammals. Second, the type I fibers are confined to the pectoralis abdominalis muscle and a small adjacent region of the caudal part of the pectoralis. This pattern of type I fiber distribution is considered a derived character state compared to muscle histochemical phenotype and isoform composition in the pectoralis muscles of other phyllostomids we have studied (Artibeus jamaicensis, Artibeus lituratus, Carollia perspicillata). We relate this to the unique locomotory needs of the common vampire bat, Desmodus rotundus. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 220 (1994), S. 295-305 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The ontogeny of a primary flight muscle, the pectoralis, in the little brown bat (Myotis lucifugus: Vespertilionidae) was studied using histochemical, immunocytochemical, and electrophoretic techniques. In fetal and early neonatal (postnatal age 1-6 days) Myotis, histochemical techniques for myofibrillar ATPase (mATPase) and antibodies for slow and fast myosins demonstrated the presence of two fiber types, here called types I and IIa. These data correlated with multiple transitional myosin heavy chain isoforms and native myosin isoforms demonstrated with SDS-PAGE and 4% pyrophosphate PAGE. There was a decrease in the distribution and number of type I fibers with increasing postnatal age. At postnatal age 8-9 days, the adult phenotype was observed with regard to muscle fiber type (100% type IIa fibers) and myosin isoform profile (single adult MHC and native myosin isoforms). This “adult” fiber type profile and myosin isoform composition preceeded adult function by about 2 weeks. For example, little brown bats were incapable of sustained flight until approximately postnatal day 24, and myofiber size did not achieve adult size until approximately postnatal day 25. Although Myotis pectoralis is unique in being composed of 100% type IIa fibers, transitional fiber types and isoforms were present. These transitional forms had been observed previously in other mammals bearing mixed adult muscle fibers and which undergo transitional stages in muscle ontogeny. However, in Myotis pectoralis, this transition transpires relatively early in development. © 1994 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 238 (1994), S. 317-325 
    ISSN: 0003-276X
    Keywords: Horse ; Myosin ; Muscle ; Fiber type ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The horse provides an interesting model for study of the structure and function of the mammalian diaphragm. Multiple regions of diaphragm from seven adult horses were prepared for histochemistry, immunocytochemistry, myosin heavy chain electrophoresis, and native myosin electrophoresis. Two additional adults were dissected to demonstrate myofiber and central tendon morphology and stained for acetylcholinesterase to demonstrate motor endplates. All regions of the adult diaphragm were histochemically characterized by a preponderance of type I fibers with some type IIa fibers. Type IIb fibers were absent in all adult specimens. Myosin heavy chain electrophoresis supported the histochemical study: two isoform bands were present on SDS gels that comigrated at the same rate as rat type I and IIa myosin heavy chain isoforms. No isoform was determined to comigrate with rat type IIb heavy chain isoforms. Native myosin isoform analysis revealed two isoforms that comigrated with rat FM-4 and FM-3 (FM = fast myosin) and two isoforms that comigrated with rat SM-1 and SM-2 (SM = slow myosin) isoforms. In some samples, a third slow native myosin isoform was observed that comigrated at the same rate as the SM-3 of the equine biceps brachii muscle. This doublet (or “triplet”) of slow isoforms is unique to some horse muscles compared with other adult animals studied. It is not known if these multiple slow native myosin isoforms confer some functional advantage to the equine muscles. The adult equine diaphragm also differs in its morphology by having a large central tendon compared to that in other mammals, and is predominantly slow in fiber type and myosin isoform composition. © 1994 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    The @Anatomical Record 238 (1994), S. 311-316 
    ISSN: 0003-276X
    Keywords: Horse ; Diaphragm ; Myosin ; Histochemistry ; Muscle development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: The diaphragm of neonatal horses is significantly different from the diaphragm of adult horses in terms of histochemical fiber type composition, myosin heavy chain isoform, and native myosin isoform composition. There is a significant increase in the percentage of type I fibers present in the diaphragm with increasing age from birth through about seven months postnatal age. A possible lack of postural tone in the hiatal region of the neonatal diaphragm is suggested to account for increased incidence of vomiting or aspiration pneumonia in younger horses. The isoform data lead to rejection of the hypothesis that the diaphragm of the horse should, as an ungulate, be relatively precocial in its rate of maturation relative to other non-ungulate mammals that have been studied. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...