Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 66 (1994), S. 1781-1783 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 88 (1984), S. 1275-1277 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 73 (1993), S. 163-167 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The friction of a clean diamond tip on diamond (111) and (100) surfaces is studied using an ultrahigh vacuum force microscope that simultaneously measures forces parallel and perpendicular to the surface. The 30 nm radius diamond tip is fabricated by chemical vapor deposition. The attractive normal force curve between the tip and surface agrees well with calculated dispersion interactions. The frictional force exhibits periodic features, which on the (100) surface are tentatively associated with a 2×1 reconstructed surface convoluted over an asymmetric tip shape. The (111) surface shows features that cannot be simply related to the surface structure. As the tip is scanned back and forth along a line, the same features are observed in each direction, but offset, suggesting the presence of a conservative force independent of the direction of motion as well as a nonconservative force. The friction is approximately (approximately-equal-to)3×10−9 N independent of loads up to 1×10−7 N.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 1228-1243 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Modulated-beam mass spectrometry and x-ray photoelectron spectroscopy (XPS) have been used to investigate the interaction of CH4, C2H4, C5H10, and H2 with carburized and uncarburized tungsten. It is shown that significant evaporation of C1, C2, and C3 occurs for carburized tungsten at temperatures above 1900 °C. The temperature dependence of the carbon evaporation rate was found to be similar to the temperature dependence of the diamond film deposition rate observed in chemical vapor deposition (CVD) reactors, similar to the temperature dependence for the carbon deposition rate observed in the present experiments, and similar to the expected evaporation rate of carbon from graphite and tungsten carbide. The desorption of hydrocarbon species (other than the incident gas) was not clearly observed under any conditions for methane or ethylene. In contrast, it is quite likely that cyclopentane decomposes at the surface to produce new species which are subsequently desorbed into the gas phase. The reaction of ethylene with tungsten is believed to result in complete decomposition with the hydrogen being desorbed as atoms or molecules while the carbon remains on the surface where there is competition between carburization and evaporation. The reaction probability of ethylene with tungsten was found to be close to unity while the reaction probability of methane was small. The removal of carbon from carburized tungsten via an etching reaction involving hydrogen was not observed.The production of hydrogen atoms from H2 was found to be largest on clean tungsten, less on carburized tungsten, and not observable on graphite. Evaporation of tungsten from carburized tungsten was seen at temperatures below 2500 °C but not below 2200 °C. XPS measurements indicated that slightly carburized tungsten contained some graphite in the surface region while heavily carburized tungsten contained much more graphite. The surface concentration of carbon was found to depend in a complicated manner on the balance between carbide and graphite growth and carbon evaporation. The reaction probability of the incident gas is also a determining factor. In addition, computer simulations were used to calculate the concentrations of various species in the gas phase under conditions which are typical of those used in diamond hot-filament CVD reactors. Calculated gas-phase species distributions near the substrate for carbon-atom/H2 mixtures are found to be similar for most species to those calculated for CH4/H2 mixtures. It appears that the fast H2 and H chemistry determines the equilibrium mixture and that it is nearly independent of the type of carbon containing species introduced near the filament. Literature results obtained in typical diamond hot-filament CVD reactors are compared and interpreted on the basis of the present data.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1520-5827
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...