Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2285
    Keywords: Cambial activity ; Frost hardiness ; Phenology ; Salix ; Ultrastructure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The ultrastructure of cells in the cambial region of Salix dasyclados Wim. (clone 78056) was studied during the development of winter hardiness and the onset of cambial activity in spring. Plants were grown at relative growth rates (RG) of 8% and 12% respectively, resulting in different nitrogen content in the stems. Frost hardiness of the plants was estimated by standardized freezing tests. Plants with a higher nitrogen status ceased growth later and started re-growth earlier in spring than plants with lower nitrogen content. Differences in ability to withstand low temperatures during autumn and spring were found between plants grown in the two nutrient treatments. During the development of frost hardiness in the autumn, the number of meristematic cells in the cambial region decreased. The cessation of meristematic activity was accompanied by cell wall thickening and ultrastructural changes in the cells. Frost hardiness increased from the ability to survive -6° C in October to survival of -80° C at the beginning of December. From November to February the cambial region comprised a layer of 2–3 thick-walled cells with conspicuous ultrastructural features. Starch accumulated in plastids in September, decreased during November to March and then increased again in accordance with changes of frost hardiness. Onset of cambial activity began between the end of March and the beginning of April, as shown by increased vacuolization of meristematic cells and mitotic activity. By April, the starch content had increased and lipolysis was observed. Frost hardiness had decreased, and plants with low and high nitrogen content were able to survive -15° C and -10° C, respectively. After budburst, all axillary shoot parts were damaged at temperatures below-3° C.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2285
    Keywords: Biomass plantations ; Buds ; Coppice ; Resprouting ; Willows
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Fast-growing willows are cultivated as coppice in short rotation biomass plantations. The production and sustainability of the system is based on the ability of trees to resprout after repeated harvesting. The large variation in coppicing ability is due to plant genotypic differences in structure and physiology as well as environmental factors. Morphological and structural prerequisites for resprouting were compared in two shrubby willows with high coppicing ability, S. viminalis and S. eriocephala, and one tree-formed species, S. amygdaloides, with low coppicing ability. The initiation and development of buds and the resprouting pattern of coppiced stools were compared. All buds were axillary in origin and showed the same principal structure consisting of one main shoot primordium and two lateral primordia. In S. viminalis and S. eriocephala the lateral buds contained several leaf primordia and sprouted shortly after the main bud. In S. amygdaloides further development of lateral buds was inhibited after formation of two budscales, and leaf primordia were not formed until the buds were forced to sprout. The number of sprouts developing after coppicing were correlated to the structure and number of buds and their position on the stools. Self-thinning rate was high and many shoots originating from lateral buds died. Most buds were located above ground on the remaining basal portions of harvested stems. No adventitious buds were found on the stools. Significantly different bud differentiation pattern and frequent sylleptic sprouting resulted in lower coppice response in S. amygdaloides compared to S. viminalis and S. eriocephala.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0931-1890
    Keywords: Key words Drought stress ; Fertilization ; Irrigation ; Nitrogen fixation ; Nodule structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract  The effects of water stress and nitrogen availability on leaf water potential, nitrogenase activity, and growth was studied in a pot experiment with Leucaena leucocephala seedlings. Water stress was imposed on fertilized and unfertilized plants after inoculation with Rhizobium. Non-inoculated seedlings were used as control plants. Water stress lowered leaf water potential in all seedlings after 14 days of treatment. In inoculated seedlings, fertilized plants were more sensitive to water stress than unfertilized plants, as shown by a higher leaf water potential in plants of the latter treatment. Uninoculated and fertilized seedlings were most affected by water stress. This indicates that Rhizobium might increase stress tolerance in unfertilized seedlings at moderate water stress levels. The combined effects of water stress and applied fertilizers resulted in cessation of nitrogen fixation. Nitrogen fixation came to a complete stop after 22 days of water stress in fertilized seedlings. The different treatments were accompanied by anatomical changes of nodule structure. It is hypothesised that the leaf water potential may be used as an indicator to predict changes in nitrogen fixation in legume tree/shrub species during periods of water stress.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1615-6102
    Keywords: Cambium ; Lamellar structures ; Lipid hydrolysis ; Myelination ; Salix ; Tannin cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary In the cambial region ofSalix dasyclados plants, extensive spherical formations of myelin-like lamellar configurations were found during the transit period between winter dormancy and reactivation of growth in early spring. The lamellar structures occurred in parenchyma cells containing tannins and were associated with spherosomes. Cytomembranes in tannin-containing cells appeared with negative contrast on electron micrographs, indicating the presence of tanniferous substances in the cytoplasm.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...