Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Monoterpene emissions, monoterpene synthase activities, photosynthesis, fluorescence yield in the dark and drought stress indicators (stomatal conductance and mid-day water potential) were concurrently measured under similar temperature and illumination in current-year leaves of Quercus ilex L. of plants grown in open-top chambers at ambient (350 ppm) and elevated (700 ppm) CO2. The study was undertaken to understand the effect of CO2 on monoterpene biosynthesis, and to predict and parameterize the biogenic emissions at growing CO2 concentrations. The results of the 1998 and 1999 studies show that at elevated CO2, and in the absence of persistent environmental stresses, photosynthesis was stimulated with respect to ambient CO2, but that the emission of the three most abundantly emitted monoterpenes (α-pinene, sabinene and β-pinene) was inhibited by approximately 68%. The enzyme activities of the monoterpene synthases catalysing the formation of the three monoterpenes were also inhibited at elevated CO2 and an excellent relationship was found between monoterpene emission and activity of the corresponding enzyme both at ambient and elevated CO2. Interestingly, however, limonene emission was enhanced in conditions of elevated CO2 as it was also the corresponding synthase. The ratio between enzyme activity and emission of the three main monoterpenes was high (above 20) at ambient CO2 but it was below 10 at elevated CO2 and, for limonene, on both treatments. Our results indicate that the overall emission of monoterpenes at elevated CO2 will be inhibited because of a concurrent, strong down-regulation of monoterpene synthase activities. When the enzyme activity does not change, as for limonene, the high photosynthetic carbon availability at elevated CO2 conditions may even stimulate emission. The results of the 1997 study show that severe and persistent drought, as commonly occurs in the Mediterranean, may inhibit both photosynthesis and monoterpene (α-pinene) emission, particularly at ambient CO2. Thus, emission is probably limited by photosynthetic carbon availability; the effect of elevated CO2per se is not apparent if drought, and perhaps other environmental stresses, are also present.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1939
    Keywords: Key words Chemo-taxonomy ; Isoprenoid emission ; Evolution ; Quercus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We show that Mediterranean oaks that emit isoprene, monoterpenes or no isoprenoids belong to different subgenera as indicated by morpho-taxonomy and molecular genetics. On the other hand, oaks from North America and Asia that are taxonomically similar to the Mediterranean monoterpene emitter Q. ilex emit isoprene only. We surmise that isoprene emission is a genetic character which evolved ancestrally in the oak genus since this is the prevalent emission type in oaks widespread around the world and adapted to different environments. This ancestral character may have been either lost or modified in more recent clades such as those originating the Mediterranean oaks. If our hypothesis is correct then the taxonomy of European oaks is validated by this independent trait. Isoprenoid emission could serve as a chemo-taxonomical marker and could be used to reconstruct the phylogeny of oaks in association with molecular markers.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...