Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 337 (1989), S. 283-285 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Early estimates of the substitution rates in pseudogenes and at silent sites in protein-coding sequences suggested that pseudogenes evolve more rapidly which implies that silent sites are under some selective constraint6'7. However, these studies used very limited data and rather simple methods of ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Molecular microbiology 24 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Type I restriction enzymes comprise three subunits encoded by genes designated hsdR, hsdM, and hsdS; S confers sequence specificity. Three families of enzymes are known and within families, but not between, hsdM and hsdR are conserved. Consequently, interfamily comparisons of M and R sequences focus on regions of putative functional significance, while both inter- and intrafamily comparisons address the origin, nature and role of diversity of type I restriction systems. We have determined the sequence of the hsdR gene for EcoA, thus making available sequences of all three hsd genes of one representative from each family. The predicted R polypeptide sequences share conserved regions with one superfamily of putative helicases, so-called ‘DEAD box’ proteins; these conserved sequences may be associated with the ATP-dependent translocation of DNA that precedes restriction. We also present hsdM and hsdR sequences for EcoE, a member of the same family as EcoA. The sequences of the M and R genes of EcoA and EcoE are at least as divergent as typical genes from Escherichia coli and Salmonella, perhaps as the result of selection favouring diversity of restriction specificities combined with lateral transfer among different species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 22 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 8 (1993), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 25 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 33 (1991), S. 13-22 
    ISSN: 1432-1432
    Keywords: Transfer RNAs ; Codon usage ; Bacteriophage T4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Patterns of codon usage in certain coliphages are adapted to expression inEscherichia coli. Bacteriophage T4 may be an exception to test the rule, as it produces eight tRNAs with specificities that are otherwise rare inE. coli. A database of all known T4 DNA sequences has been compiled, comprising 174 genes and a total of 115 kb (approximately 70% of the T4 genome). Codon usage has been examined in all T4 genes; some of these are known to be expressed before, and some after, the production of phage tRNAs. The results show two different patterns of codon usage: by comparison with the early genes, the late genes exhibit a shift in preference toward those codons recognized by the phage-encoded tRNAs. The T4 tRNAs translate A-ending codons, and it is possible that the phage acquired the tRNA genes because the mutation bias of the T4 DNA polymerase forces the T4 genome toward A+T-richness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 33 (1991), S. 23-33 
    ISSN: 1432-1432
    Keywords: Molecular clocks ; Enterobacteria ; Elongation factor Tu ; Genome evolution ; Synonymous codon usage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nature and extent of DNA sequence divergence between homologous proteincoding genes fromEscherichia coli andSalmonella typhimurium have been examined. The degree of divergence varies greatly among genes at both synonymous (silent) and nonsynonymous sites. Much of the variation in silent substitution rates can be explained by natural selection on synonymous codon usage, varying in intensity with gene expression level. Silent substitution rates also vary significantly with chromosomal location, with genes nearoriC having lower divergence. Certain genes have been examined in more detail. In particular, the duplicate genes encoding elongation factor Tu,tufA andtufB, fromS. typhimurium have been compared to theirE. coli homologues. As expected these very highly expressed genes have high codon usage bias and have diverged very little between the two species. Interestingly, these genes, which are widely spaced on the bacterial chromosome, also appear to be undergoing concerted evolution, i.e., there has been exchange between the loci subsequent to the divergence of the two species.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 25 (1987), S. 58-64 
    ISSN: 1432-1432
    Keywords: Molecular evolution ; Protein sequence conservation ; Synonymous substitution ; Unequal crossover ; Gene conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Ubiquitin is remarkable for its ubiquitous distribution and its extreme protein sequence conservation. Ubiquitin genes comprise direct repeats of the ubiquitin coding unit with no spacers. The nucleotide sequences of several ubiquitin repeats from each of humans, chicken,Xenopus, Drosophila, barley, and yeast have recently been determined. By analysis of these data we show that ubiquitin is evolving more slowly than any other known protein, and that this (together with its gene organization) contributes to an ideal situation for the occurrence of concerted evolution of tandem repeats. By contrast, there is little evidence of between-cluster concerted evolution. We deduce that in ubiquitin genes, concerted evolution involves both unequal crossover and gene conversion, and that the average time since two repeated units within the polyubiquitin locus most recently shared a common ancestor is approximately 38 million years (Myr) in mammals, but perhaps only 11 Myr inDrosophila. The extreme conservatism of ubiquitin evolution also allows the inference that certain synonymous serine codons differing at the first two positions were probably mutated at single steps.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 21 (1985), S. 150-160 
    ISSN: 1432-1432
    Keywords: Bacteriophage T7 ; DNA sequence analysis ; Codon usage ; Molecular evolution ; Synonymous codons ; RNY codons ; Restriction sites ; tRNA ; Pretermination codons
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We searched the complete 39,936 base DNA sequence of bacteriophage T7 for nonrandomness that might be attributed to natural selection. Codon usage in the 50 genes of T7 is nonrandom, both over the whole code and among groups of synonymous codons. There is a great excess of purineany base-pyrimidine (RNY) codons. Codon usage varies between genes, but from the pooled data for the whole genome (12,145 codons) certain putative selective constraints can be identified. Codon usage appears to be influenced by host tRNA abundance (particularly in highly expressed genes), tRNA-mRNA interactions (one such interaction being perhaps responsible for maintaining the excess of RNY codons) and a lack of short palindromes. This last constraint is probably due to selection against host restriction enzyme recognition sites; this is the first report of an effect of this kind on codon usage. Selection against susceptibility to mutational damage does not appear to have been involved.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...