Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-072X
    Keywords: Rhodopseudomonas sphaeroides ; tRNAphe ; Intracytoplasmic membrane induction ; RPC-5 reversed phase chromatography ; BDEAE cellulose chromatography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new iso-accepting tRNAphe from extracts of chemoheterotrophic and photoheterotrophic cells of Rhodopseudomonas sphaeroides has been identified by both BDEAE cellulose and RPC-5 chromatography. Rechromatography of each of the tRNAphe species in either the acylated or deacylated state shows that they migrate as single homogeneous peaks. In steady-state chemoheterotrophic cultures of R. sphaeroides tRNA I–II phe account for 25–30% of the total phenylalanine accepting activity while in steadystate photoheterotrophic cultures tRNA I–II phe account for no more than 10% of the total phenylalanine accepting activity. During the transition from chemoheterotrophic to photoheterotrophic growth conditions the levels of tRNA I–II phe fall in an exponential manner during the first half of the intracytoplasmic membrane induction period. tRNA I phe then remains at a level 10% that of its steady-state chemoheterotrophic level as long as photoheterotrophic growth conditions remain. tRNA II phe , after dropping to 10% of its former chemoheterotrophic level then returns to a level 50% that of its chemoheterotrophic level as long as photoheterotrophic growth conditions remain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 22 (1983), S. 15-29 
    ISSN: 0730-2312
    Keywords: Rhodopseudomonas sphaeroides ; photosynthetic membrane synthesis ; cell cycle ; freeze fracture ; macromolecule distribution ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The steady-state biosynthesis of the photosynthetic membrane (ICM) of Rhodopseudomonas sphaeroides has been reviewed. At moderate light intensities, 500 ft-c, preexisting ICM serves as the insertion matrix for newly synthesized membrane components. Whereas the bulk of the membrane protein, protein-pigment complexes, and pigments are inserted into preexisting ICM throughout the cell cycle, phospholipid is transferred from outside the ICM to the ICM only at the time of cell division. Because the site of cellular phospholipid synthesis is the cytoplasmic membrane, these results infer that despite the physical continuity of cytoplasmic membrane and ICM, there must exist between these membranous domains a “barrier” to the free diffusion of cellular phospholipid. The cyclical alternation in protein to phospholipid ratio of the ICM infers major structural and functional alternations, such as changes in the protein to lipid ratio of the membrane, specific density of the membrane, lipid structure within the membrane, and the rate of cyclic electron flow. When biochemical studies are correlated with detailed electron microscopic investigations we can further conclude that the number of photosynthetic units within the plane of the membrane can vary by nearly a factor of two over the course of the cell cycle. The average physical size of the photosynthetic units is constant for a given light intensity but inversely proportional to light intensity. The distribution of photosynthetic unit size classes within the membrane can be interpreted as suggesting that the “core” of the photosynthetic unit (reaction center plus fixed antenna complex) is inserted into the membrane coordinately as a structural entity. The variable antenna complex is, on the other hand, inserted independent of the “core” and randomly associates with both old and new core complexes. Finally, we conclude that there is substantial substructure to the distribution of photosynthetic units within the ICM, ie, they are highly ordered and exist in a defined spatial orientation to one another.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...