Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0014-5793
    Keywords: Amphibian metamorphosis ; Binding of thyroid hormone ; Expression of a cytosolic protein ; Gene regulation ; Thyroid hormone
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Developmental Biology 161 (1994), S. 48-58 
    ISSN: 0012-1606
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Gene Structure and Expression 1217 (1994), S. 227-228 
    ISSN: 0167-4781
    Keywords: (Xenopus laevis) ; Metamorphosis ; Ribosomal protein ; cDNA
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 761-771 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The objective of the present study was to determine whether the ductility and toughenability of a highly cross-linked epoxy resin, which has a high glass transition temperature, Tg, can be enhanced by the incorporation of a ductile thermoplastic resin. Diglycidyl ether of bisphenol-A (DGEBA) cured by diamino diphenyl sulphone (DDS) was used as the base resin. Polyethersulphone (PES) was used as the thermoplastic modifier. Fracture toughness and shear ductility tests were performed to characterize the materials. The fracture toughness of the DDS-cured epoxy was not enhanced by simply adding PES. However, in the presence of rubber particles as a third component, the toughness of the PES–rubber-modified epoxy was found to improve with increasing PES content. The toughening mechanisms were determined to be rubber cavitation, followed by plastic deformation of the matrix resin. It was also determined, through uniaxial compression tests, that the shear ductility of the DDS-cured epoxy was enhanced by the incorporation of PES. These results imply that the intrinsic ductility, which had been enhanced by the PES addition, was only activated under the stress state change due to the cavitation of the rubber particles. The availability of increasing matrix ductility seems to be responsible for the increase in toughness.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 33 (1998), S. 3479-3488 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The local strains in unmodified and rubber-modified epoxies under multiaxial stress states were examined. Matrix ductility was varied by using epoxide resins of different epoxide monomer molecular weights. The stress state was altered from a plane strain case to a plane stress case by varying the thickness of the test specimens. It was confirmed that, in the case of unmodified resins, the thinner specimens which experienced nearly uniaxial tensile stress exhibited much higher local strains at failure than the thicker counterparts which experienced highly triaxial tensile stress. Also, the cross-link density was reduced as monomer molecular weight increased, thus the increase in local plastic strain due to the stress state change also became greater. Furthermore, it was found that rubber modification markedly increased the plastic strain to failure, irrespective of the specimen dimensions, and that the extent of this plastic strain increased as cross-link density was lowered. These results are consistent with the concept that the cavitation of rubber particles relieves the initial multiaxial constraint in a thick specimen, induces a stress state closer to plane stress throughout the specimen, and consequently enables the matrix to deform to a larger extent. The results also show clearly that the toughenability of a matrix resin is not independent of the stress state and the matrix ductility.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...