Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) causes both Ca2+ release and Ca2+ influx in bovine adrenal chromaffin cells. To elucidate the mechanisms of PACAP-induced Ca2+ release, we investigated expression of PACAP receptors and measured inositol trisphosphates (IP3), cyclic AMP, and the intracellular Ca2+ concentration in bovine adrenal medullary cells maintained in primary culture. RT-PCR analysis revealed that bovine adrenal medullary cells express the PACAP receptor hop, which is known to couple with both IP3 and cyclic AMP pathways. The two naturally occurring forms of PACAP, PACAP38 and PACAP27, both increased cyclic AMP and IP3, and PACAP38 was more potent than PACAP27 in both effects. Despite the effects of PACAP on IP3 production, the Ca2+ release induced by PACAP38 or by PACAP27 was unaffected by cinnarizine, a blocker of IP3 channels. The potencies of the peptides to cause Ca2+ release in the presence of cinnarizine were similar. The Ca2+ release induced by PACAP38 or by PACAP27 was strongly inhibited by ryanodine and caffeine. In the presence of ryanodine and caffeine, PACAP38 was more potent than PACAP27. PACAP-induced Ca2+ release was unaffected by Rp-adenosine 3′,5′-cyclic monophosphothioate, an inhibitor of protein kinase A. Ca2+ release induced by bradykinin and angiotensin II was also inhibited by ryanodine and caffeine, but unaffected by cinnarizine. Although IP3 production stimulated by PACAP38 or bradykinin was abolished by the phospholipase C inhibitor, U-73122, Ca2+ release in response to the peptides was unaffected by U-73122. These results suggest that PACAP induces Ca2+ release from ryanodine/caffeine stores through a novel intracellular mechanism independent of both IP3 and cyclic AMP and that the mechanism may be the common pathway through which peptides release Ca2+ in adrenal chromaffin cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 680 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In the present study, the effects of glutamate and of agonists for ionotropic and metabotropic glutamate receptors on intracellular Ca2+ concentration ([Ca2+]i) were investigated in neurons of the rat supraoptic nucleus (SON). We used the intracellular Ca2+ imaging technique with fura-2, in single magnocellular neurons dissociated from the SON of rats. Glutamate (10−6−10−4 M) evoked a dose-dependent increase in [Ca2+]i. The glutamate agonists exerted similar effects, although with some differences in the characteristics of their responses. The [Ca2+]i response to NMDA was smaller than those of glutamate or the non-NMDA receptor agonists, AMPA and kainate, but was significantly enhanced by the removal of extracellular Mg2+. Glutamate, as well as quisqualate, an agonist for both ionotropic and metabotropic glutamate receptors, evoked a [Ca2+]i increase in a Ca2+-free condition, suggesting Ca2+ release from intracellular Ca2+ stores. This was further evidenced by [Ca2+]i increases in response to a more selective metabotropic glutamate receptor agonist, t-ACPD, in the absence of extracellular Ca2+. Furthermore, the quisqualate-induced Ca2+ release was abolished by the selective metabotropic glutamate receptor antagonist, (S)-4-carboxyphenylglycine. The results suggest that metabotropic glutamate receptors as well as non-NMDA and NMDA receptors are present in the SON neurons, and that activation of the first leads to Ca2+ release from intracellular Ca2+ stores and the activation of the latter two types induces Ca2+ entry. These dual mechanisms of Ca2+ signalling may play a role in the regulation of SON neurosecretory cells by glutamate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Pituitary adenylate cyclase activating polypeptide (PACAP)-like immunoreactivity and its receptor mRNA have been reported in the supraoptic and the paraventricular nucleus (SON and PVN, respectively) and PACAP has been implicated in the regulation of magnocellular neurosecretory cell function. To examine the site and the mechanism of the action of PACAP in the neurosecretory cells, we measured AVP release from SON slice preparations and the cytosolic Ca2+ concentration ([Ca2+]i) from single dissociated SON neurons. PACAP at concentrations from 10−12 to 10−7 M increased [Ca2+]i in dissociated SON neurons in a dose-dependent manner. The patterns of the PACAP-induced [Ca2+]i increase were either sustained increase or cytosolic Ca2+ oscillations. PACAP (10−7 M) increased [Ca2+]i in 27 of 27 neurons and glutamate (10−4 M) increased [Ca2+]i in 19 of 19 SON neurons examined, whereas angiotensin II (10−7 M) increased [Ca2+]i in only 15 of 60 SON neurons examined. PACAP at lower concentrations (10−10 to 10−8 M) increased [Ca2+]i in 70–80% of neurons examined. Although the onset and recovery of the PACAP-induced [Ca2+]i increase were slower than those observed with glutamate, the spatial distribution of the [Ca2+]i increases in response to the two ligands were similar: [Ca2+]i increase at the proximal dendrites was larger and faster and that at the center of the soma was smaller and slower. The PACAP-induced [Ca2+]i responseswere abolished by extracellular Ca2+ removal, the l-type Ca2+-channel blocker, nicardipine, or by replacement of extracellular Na+ with N-methyl d-glucamine, and were partially inhibited by the Na+-channel blocker, tetrodotoxin. The N-type Ca2+-channel blocker, ω-conotoxin GVIA did not significantly inhibit the PACAP-induced [Ca2+]i responses. Furthermore, PACAP (10−7 M) as well as glutamate (10−4 M) increased AVP release from SON slice preparations, and extracellular Ca2+ removal or nicardipine inhibited the AVP release in response to PACAP.These results indicate that PACAP enhances Ca2+ entry via voltage-gated Ca2+ channels and increases [Ca2+]i, which, in turn, stimulates somatodendritic vasopressin release by directly activating PACAP receptors on SON neurons. The results also suggest that PACAP in the SON may play a pivotal role in the control of the neurohypophyseal function at the level of the soma or the dendrites.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 680 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...