Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 61 (1984), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Acetylcholine in plants was identified by gas chromatography/mass spectrometry. Acetylcholine was found in the following species from 13 families: Betula pendula, Codiaeum variegatum, Ilex opaca, Liquidambar styraciflua, Lonicera japonica, Phaseolus aureus, Phaseolus vulgaris, Pisum sativum, Plantago rugelli, Populus grandidentata, Prunus serotina, Rhus copallina, Smilax hispida, Viburnum dilatatum, and Zea mays. Levels of acetylcholine in leaves ranged from a low of 0.14 ± 0.05 (mean ± SEM) nmol (g fresh weight)−1 in I. opaca to a high of 53 ± 6.6 nmol (g fresh weight)−1 in P. aureus. Acetylcholine was found in all tissues examined regardless of the organ (leaves, stems, or roots) or developmental stage (seedlings, mature plants, or seeds). For P. aureus, continuous light exposure increased acetylcholine levels of leaves, and decreased levels in stem when compared to dark controls. Levels of choline, a precursor of acetylcholine, found in leaves ranged from a low of 84 ± 7.0 nmol (g fresh weight)−1 in L. styraciflua to a high of 3700 ± 200 nmol (g fresh weight)−1 in P. aureus. With these findings, three out of the four components of the cholinergic system have now been identified in plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 62 (1984), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Propionylcholine, a novel analogue of acetylcholine, was identified in green plants by gas chromatography/mass spectrometry. Propionylcholine was found in the leaves of the following species previously shown to contain acetylcholine and cholinesterase activity: Codiaeum variegatum Blume, Phaseolus aureus Roxb. cv. Berken, Plantago rugelli Decne., Populus grandidentata Michx., and Betula pendula Roth. The quantities of propionylcholine ranged from a high of 2.3 nmol (g fresh weight)−1 in C. variegatum to a low of 0.11 nmol (g fresh weight)−1 in P. rugelli. These amounts represented 6 to 8% of the levels of acetylcholine. In contrast to animal tissues which rarely synthesize propionylcholine, this compound was found in all species examined which represented five families of flowering plants.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2072
    Keywords: Cholinergic function ; Acetylcholine ; Choline ; Levels ; Turnover rates ; Gas chromatography ; Lead poisoning ; Malnutrition ; Central nervous system
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Rats were exposed to lead acetate from birth, and were killed at the age of 44–51 days for analysis of levels and turnover rates of acetylcholine (ACh). Steady-state levels of ACh were not altered in midbrain, cortex, hippocampus, or striatum of lead-exposed rats. Similarly, no changes in choline (Ch) concentrations were found in cortex, hippocampus, or striatum. In the midbrain, however, a 30% reduction in Ch levels was observed. Changes in specific activity of Ch and ACh were measured as a function of time in selected brain areas of rats infused with a radio-labeled precursor of Ch. Specific activities of ACh were not altered. Ch specific activities were, however, significantly elevated in all brain areas examined, as compared with age-matched control rats. The in vivo ACh turnover rate in cortex, hippocampus, midbrain, and striatum was diminished by 35%, 54%, 51% and 33%, respectively. These findings provide direct evidence for an inhibitory effect of lead exposure from birth on central cholinergic function in vivo. Since a significant reduction of body weight was found in those animals treated with lead acetate, the alteration of central cholinergic function may partially be attributed to malnutrition observed in the lead-exposed animals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 84 (1984), S. 426-430 
    ISSN: 1432-2072
    Keywords: Physostigmine ; Antinociception ; Dexamethasone ; Endogenous opiates ; Adrenalectomy ; Tail flick ; Pituitary ; adrenal axis ; Muscarinic receptors ; Cholinesterase inhibitors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The tail-flick procedure was used to study the antinociceptive effects of physostigmine in adrenalectomized and sham-operated rats. At 5 days after surgery, they were tested 30 min after either 0.32 or 0.45 mg/kg IP physostigmine. Adrenalectomized animals showed significantly greater elevation of TF scores from predrug latencies than the sham controls at both doses of physostigmine. Following 3 days of dexamethasone replacement therapy on days 18, 19, and 20 post-surgery the antinociceptive effects of physostigmine were uniformly attenuated across doses or surgical groups. On the other hand, animals receiving saline injection instead of dexamethasone did not manifest any reduction of the physostigmine antinociceptive effect. The potentiation by adrenalectomy and the reduction following dexamethasone of the antinociceptive effects of physostigmine suggest that these effects may be mediated through hypothalamic-pituitary-adrenal mechanisms and are consistent with β-endorphin-induced sensitization of opiate or cholinergic receptors.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of biomedical science 6 (1999), S. 86-96 
    ISSN: 1423-0127
    Keywords: Organophosphorus compounds ; Nerve agents ; Soman-Convulsions ; Seizures ; EEG activity ; Anticonvulsants ; Anti-epileptic drugs ; Anticholinergic drugs ; Benzodiazepines ; NMDA antagonists
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract This report describes studies of anticonvulsants for the organophosphorus (OP) nerve agent soman: a basic research effort to understand how different pharmacological classes of compounds influence the expression of seizure produced by soman in rats, and a drug screening effort to determine whether clinically useful antiepileptics can modulate soman-induced seizures in rats. Electroencephalographic (EEG) recordings were used in these studies. Basic studies were conducted in rats pretreated with HI-6 and challenged with 1.6×LD50 soman. Antimuscarinic compounds were extremely effective in blocking (pretreatment) or terminating soman seizures when given 5 min after seizure onset. However, significantly higher doses were required when treatment was delayed for more than 10 min, and some antimuscarinic compounds lost anticonvulsant efficacy when treatment was delayed for more than 40 min. Diazepam blocked seizure onset, yet seizures could recur after an initial period of anticonvulsant effect at doses ≤2.5 mg/kg. Diazepam could terminate ongoing seizures when given 5 min after seizure onset, but doses up to 20 mg/kg were ineffective when treatment was delayed for 40 min. The GABA uptake inhibitor, tiagabine, was ineffective in blocking or terminating soman motor convulsions or seizures. The glutamate receptor antagonists, NBQX, GYKI 52466, and memantine, had weak or minimal antiseizure activity, even at doses that virtually eliminated signs of motor convulsions. The antinicotinic, mecamylamine, was ineffective in blocking or stopping seizure activity. Pretreatment with a narrow range of doses of α2-adrenergic agonist, clonidine, produced variable protection (40–60%) against seizure onset; treatment after seizure onset with clonidine was not effective. Screening studies in rats, using HI-6 pretreatment, showed that benzodiazepines (diazepam, midazolam and lorazepam) were quite effective when given 5 min after seizure onset, but lost their efficacy when given 40 min after onset. The barbiturate, pentobarbital, was modestly effective in terminating seizures when given 5 or 40 min after seizure onset, while other clinically effective antiepileptic drugs, trimethadione and valproic acid, were only slightly effective when given 5 min after onset. In contrast, phenytoin, carbamazepine, ethosuximide, magnesium sulfate, lamotrigine, primidone, felbamate, acetazolamide, and ketamine were ineffective.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Archives of toxicology 67 (1993), S. 637-646 
    ISSN: 1432-0738
    Keywords: Soman ; Organophosphorus compounds ; Nerve agents ; Cholinesterase ; Oximes ; Enzyme reactivation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The ability of three oximes, HI-6, MMB-4 and ICD-467, to reactivate cholinesterase (ChE) inhibited by the organophosphorus compound soman was compared in blood (plasma and erythrocytes), brain regions (including spinal cord) and peripheral tissues of rats. Animals were intoxicated with soman (100 μg/kg, SC; equivalent to 0.9 × LD50 dose) and treated 1 min later with one of these oximes (100 or 200 μmol/kg, IM). Toxic sign scores and total tissue ChE activities were determined 30 min later. Soman markedly inhibited ChE activity in blood (93–96%), brain regions (ranging from 78% to 95%), and all peripheral tissues (ranging from 48.9% to 99.8%) except liver (11.9%). In blood, treatment with HI-6 or ICD-467 resulted in significant reactivation of soman-inhibited ChE. In contrast, MMB-4 was completely ineffective. HI-6 and ICD-467 were equally effective at the high dose. At the low dose ICD-467 treatment resulted in significantly higher plasma ChE than HI-6 treatment, whereas HI-6 treatment resulted in higher erythrocyte ChE than ICD-467 treatment. However, none of these three oximes reactivated or protected soman-inhibited ChE in the brain. In all peripheral tissues (except liver) studied, MMB-4 was not effective. HI-6 reactivated soman-inhibited ChE in all tissues except lung, heart, and skeletal muscle. ICD-467 was highly effective in reactivating ChE in all tissues and afforded a complete recovery of ChE to control levels in intercostal muscle and salivary gland. Oxime treatments did not modify the toxic scores produced by soman. However, treatment with the high dose (200 μmol/kg) of ICD-467 depressed respiration and two of the six rats died in 10 min. These observations indicate that MMB-4 is completely ineffective in protecting and/or reactivating soman-inhibited ChE, HI-6 is an effective ChE reactivator as reported earlier in rats and other species, and the imidazolium oxime ICD-467 is a powerful reactivator of somaninhibited ChE; however, its toxic interactions with soman may not be related to tissue ChE levels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0738
    Keywords: Key words Seizure ; Benzodiazepine ; Nerve agent ; Soman ; Anticonvulsant
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract This study evaluated the ability of six benzodiazepines to stop seizures produced by exposure to the nerve agent soman. Guinea pigs, previously prepared with electrodes to record electroencephalographic (EEG) activity, were pretreated with pyridostigmine (0.026 mg/kg, i.m.) 30 min before challenge with soman (56 μg/kg, s.c.) and then treated 1 min after soman exposure with atropine (2.0 mg/kg, i.m.) and pralidoxime chloride (2-PAM Cl; 25 mg/kg, i.m.). All animals developed seizures following this treatment. Benzodiazepines (avizafone, clonazepam, diazepam, loprazolam, lorazepam, and midazolam) were given i.m. 5 or 40 min after seizure onset. All benzodiazepines were effective in stopping soman-induced seizures, but there were marked differences between drugs in the rapidity of seizure control. The 50% effective dose (ED50) values and latencies for anticonvulsant effect for a given benzodiazepine were the same at the two times of treatment delay. Midazolam was the most potent and rapidly acting compound at both treatment times. Since rapid seizure control minimizes the chance of brain damage, use of midazolam as an anticonvulsant may lead to improved clinical outcome in the treatment of nerve agent seizures.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Psychopharmacology 78 (1982), S. 170-175 
    ISSN: 1432-2072
    Keywords: Acetylcholine ; Choline ; Soman ; Organophosphate ; Anticholinesterase ; Toxicity ; Lethality ; CNS ; Brain areas ; Rats ; Gas chromatography ; Mass spectrometry ; Time course ; Cholinergic function
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The time course of changes in rat brain levels of acetylcholine (ACh) and choline (Ch) was investigated following a single SC injection of soman (0.9 LD50, 120 μg/kg) to understand the relationship between central neurotransmitter alteration and soman toxicity. Of the animals exposed to the dose of soman, 46% died within 24 h, with maximum mortality occurring during the first 40 min following soman administration. In a second group, surviving rats were killed at various times after treatment by a beam of focused microwave radiation to the head, and ACh and Ch levels were determined by gas chromatography-mass spectrometry. Soman produced a maximal ACh elevation in the brain stem at 20 min (34.4%), in cerebellum at 40 min (51.9%), in cortex and striatum at 2 h (320.3% and 35.2%, respectively), and in hippocampus and midbrain at 3 h (94.5% and 56.8%, respectively). ACh levels remained above normal approximately 30 min in the brain stem; 2 h in the midbrain, cerebellum, and striatum; 8 h in the cortex; and 16 h in the hippocampus. Ch levels were elevated in all areas except the striatum. Ch maxima occurred at 10–40 min and returned to control levels approximately 3 h after injection. Results suggest that perturbation of ACh levels due to soman was not uniform throughout the brain and that soman toxicity may reflect ACh changes in multiple areas, rather than changes in any given area. These data further suggest a possible relationship between elevated Ch levels and soman toxicity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-2072
    Keywords: Methylphenidate ; Hyperkinesis ; Mesencephalic Reticular Formation ; Thalamus ; Attention ; Arousal ; CNS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Intravenous administration of methylphenidate (1 or 2 mg/kg) markedly attenuated the unit discharge rate in the mesencephalic reticular formation of rats and cats. Concurrently this drug enhanced the neural activity in the primary sensory nuclei of the thalamus. The differential effects of methylphenidate on these two neural systems suggest a possible mechanism by which it may improve attentive processes in hyperkinesis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2072
    Keywords: Methylphenidate ; Lead toxicity ; Cholinergic and catecholaminergic effects ; Mesencephalic reticular formation ; CNS ; Hyperkinesis ; Supersensitivity ; Oxotremorine ; Nicotine ; Model
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The effects of methylphenidate (MPH) and the cholinergic agonists nicotine and oxotremorine were tested on the spontaneous multiple unit activity in the mesencephalic reticular formation of two groups of rats. In control rats i.v. MPH (1 mg/kg), nicotine (0.125 mg/kg), and oxotremorine (0.5 mg/kg) all attenuated the unit activity with latencies of less than 10 min. In another group of rats, exposed to lead acetate since birth, the extent of attenuation of unit activity induced by MPH and nicotine was reduced and the latency of effect was delayed by 45–50 min. The latency of the oxotremorine effect was not changed but the attenuation of unit activity was more pronounced in the lead-treated group. Pretreatment with spiroperidol, to inhibit the aminergic receptors, diminished the inhibitory effect of MPH in the control group but not in the lead-treated group, whereas the attenuating effect of oxotremorine was not affected in either group. These data support our previous evidence that MPH exerts its action in the central nervous system by a cholinergic pathway in addition to published catecholaminergic pathways. Furthermore, the present findings indicate that chronic leadexposure in rats results in cholinergic hypofunction and supersensitivity at central cholinergic receptor sites. This alteration of central cholinergic function may be partially attributed to the malnutrition observed in the lead-exposed animals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...