Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Astronomy reports 44 (2000), S. 530-547 
    ISSN: 1562-6881
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract We have performed a detailed statistical-equilibrium analysis based on a 49-level model of the magnesium atom for the atmospheres of stars of various spectral types: T eff=4500–12000 K, logg=0.0–4.5, and [M/H]=0 to −3. In the atmospheres of stars with T eff〉5500 K, deviations from LTE for Mg I are due to photoionization by ultraviolet radiation from the 3p level; i.e., neutral magnesium is in a state of “superionization.” When T eff〈5500 K, the populations of the Mg I levels differ from their LTE values due to radiative processes in bound-bound transitions. We analyzed Mg I lines in the solar spectrum in order to empirically refine certain atomic parameters (the van der Waals broadening constant C 6 and cross sections for photoionization and collisional interactions with hydrogen atoms) and the magnesium abundance in the solar atmosphere. We studied non-LTE effects for five Mg I lines for a wide range of stellar parameters. In the case of dwarfs and subdwarfs, the magnitude of non-LTE corrections to magnesium abundances does not exceed 0.1 dex for the λλ 4571, 4703, 5528, and 5711 Å lines but can be as large as ±0.2 dex for the λλ 3829–3838, 5172, and 5183 Å lines. The non-LTE corrections for giants and supergiants do not exceed 0.15 dex for the λλ 4571 and 5711 Å lines but can reach ±0.20 dex and even more for the λλ 4703, 5528, 3829–3838, 5172, and 5183 Å lines.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...