Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 65 (1995), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The Alzheimer amyloid precursor (APP) protein is a member of a family of glycoproteins that includes the amyloid precursor-like proteins (APLPs). Previously, we showed that in C6 glioma cell cultures, secreted APP nexin II occurs as the core protein of a chondroitin sulfate proteoglycan (CSPG). Here, we report that among seven untransfected cell lines, expression of secreted APP CSPG was restricted to two cell lines of neural origin, namely, C6 glioma and Neuro-2a neuroblastoma (N2a) cells. Addition of dibutyryl cyclic AMP in N2a cultures, a treatment that induces the neuronal phenotype in these cells, resulted in a significant reduction in the amount of the secreted APP CSPG, although secretion of APP was only marginally affected. Growth in the presence of serum increased the size of the secreted APP CSPG, suggesting that the number and/or length of the chondroitin sulfate (CS) chains attached to the core APP varies with growth conditions. Extensive mapping with epitope-specific anti-bodies suggested that a CS chain is attached within or proximal to the Aβ sequence of APP. In contrast to the restricted expression of the APP CSPG, expression of secreted APLP2 CSPGs was observed in all cell lines examined. After chondroitinase treatment, two core proteins of ∼100 and 110 kDa were obtained that reacted with an APLP2-specific antiserum, suggesting that non-transfected cell lines contain at least two endogenous APLP2 CSPGs, probably derived by alternative splicing of the APLP2 KPI domain. The fraction of the APLP2 proteins in the CSPG form was dependent on the particular cell line examined. The proteoglycan nature of APP and APLP2 suggests that addition of the CS glycosaminoglycan chains is important for the implementation of the biological function of these proteins. However, the differential expression of these two proteoglycans suggests that their physiological roles and their possible involvement in Alzheimer's disease may differ.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Presenilin 1 is an integral membrane protein specifically cleaved to yield an N-terminal and a C-terminal fragment, both membrane-associated. More than 40 presenilin 1 mutations have been linked to early-onset familial Alzheimer disease, although the mechanism by which these mutations induce the Alzheimer disease neuropathology is not clear. Presenilin 1 is expressed predominantly in neurons, suggesting that the familial Alzheimer disease mutants may compromise or change the neuronal function(s) of the wild-type protein. To elucidate the function of this protein, we studied its expression in neuronal vesicular systems using as models the chromaffin granules of the neuroendocrine chromaffin cells and the major categories of brain neuronal vesicles, including the small clear-core synaptic vesicles, the large dense-core vesicles, and the somatodendritic and nerve terminal clathrin-coated vesicles. Both the N- and C-terminal presenilin 1 proteolytic fragments were greatly enriched in chromaffin granule and neuronal large dense-core vesicle membranes, indicating that these fragments are targeted to these vesicles and may regulate the large dense-core vesicle-mediated secretion of neuropeptides and neurotransmitters at synaptic sites. The presenilin 1 fragments were also enriched in the somatodendritic clathrin-coated vesicle membranes, suggesting that they are targeted to the somatodendritic membrane, where they may regulate constitutive secretion and endocytosis. In contrast, these fragments were not enriched in the small clear-core synaptic vesicle or in the nerve terminal clathrin-coated vesicle membranes. Taken together, our data indicate that presenilin 1 proteolytic fragments are targeted to specific populations of neuronal vesicles where they may regulate vesicular function. Although full-length presenilin 1 was present in crude homogenates, it was not detected in any of the vesicles studied, indicating that, unlike the presenilin fragments, full-length protein may not have a vesicular function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 695 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Notes: Amyloid β protein (β/A4 or Aβ), the main protcinaceous component of the amyloid depositions of the Alzheimer's brain, derives from the proteolytic processing of the amyloid precursor protein (APP). Cleavage of the amyloid precursor by at least two distinct secretase activities produces soluble secreted APP. The major secretase cleavage (site I) takes place between Aβ 16 and 17, while the minor cleavage (site II) takes place after Aβ Lys 28 and may produce potentially amyloidogenic secreted APP. Full-length cellular APP is cleaved by secretase intracellularly in the Trans-Golgi Network (TGN) or in post-Golgi vesicles. The resultant soluble APP is transported to the plasma membrane and exocytosed.The biological activity of the APP is still not completely understood, although it seems to act as a cell adhesion molecule. Recent studies have shown that in glioma cells, most of the soluble secreted APP occurs as a chondroitin sulfate proteoglycan (CSPG). In addition, full length APP CSPG has been detected in neuroblastoma and fibroblast cells as well as on the surface of glioma cells, and in human brain. These results suggest that the proteoglycan nature of the APP proteins may be important for their biological function.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0533
    Keywords: Key words Alzheimer’s disease ; Cerebral cortex ; Neuronal loss ; Pick’s disease ; Presenilin-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Recent studies have reported that neuronal populations expressing low levels of presenilin-1 (PS-1) display increased vulnerability in late-onset sporadic Alzheimer’s disease (AD). To examine whether this phenomenon also occurs in other neurodegenerative diseases, we performed a quantitative immunocytochemical study of PS-1 distribution in the cerebral cortex of Pick’s disease (PiD) cases and non-demented individuals. In PiD cases, the percentage of PS-1-containing, Pick body (PB)-free neurons was significantly elevated only in cortical areas showing neuronal loss. In these areas, PS-1 levels, measured by immunoblotting, were often higher in PiD compared to non-demented cases. Moreover, PS-1 immunoreactivity was significantly reduced in PB-containing neurons. These data suggest that as previously shown in AD, low cellular expression of PS-1 may be associated with increased neuronal loss and cellular degeneration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...