Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 100 (1994), S. 93-106 
    ISSN: 1432-1106
    Keywords: Vestibular ; Posture ; Head stabilization ; Somatosensory ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The relative contribution of vestibular and somatosensory information to triggering postural responses to external body displacements may depend on the task and on the availability of sensory information in each system. To separate the contribution of vestibular and neck mechanisms to the stabilization of upright stance from that of lower body somatosensory mechanisms, responses to displacements of the head alone were compared with responses to displacements of the head and body, in both healthy subjects and in patients with profound bilateral vestibular loss. Head displacements were induced by translating two 1-kg weights suspended on either side of the head at the level of the mastoid bone, and body displacements were induced translating the support surface. Head displacements resulted in maximum forward and backward head accelerations similar to those resulting from body displacements, but were not accompanied by significant center of body mass, ankle, knee, or hip motions. We tested the effect of disrupting somatosensory information from the legs on postural responses to head or body displacements by sway-referencing the support surface. The subjects' eyes were closed during all testing to eliminate the effects of vision. Results showed that head displacements alone can trigger medium latency (48–84 ms) responses in the same leg and trunk muscles as body displacements. Nevertheless, it is unlikely that vestibular signals alone normally trigger directionally specific postural responses to support surface translations in standing humans because: (1) initial head accelerations resulting from body and head displacements were in opposite directions, but were associated with activation of the same leg and trunk postural muscles; (2) muscle responses to displacements of the head alone were only one third of the amplitude of responses to body displacements with equivalent maximum head accelerations; and (3) patients with profound bilateral vestibular loss showed patterns and latencies of leg and trunk muscle responses to body displacements similar to those of healthy subjects. Altering somatosensory information, by sway-referencing the support surface, increased the amplitude of ankle muscle activation to head displacements and reduced the amplitude of ankle muscle activation to body displacements, suggesting context-specific reweighting of vestibular and somatosensory inputs for posture. In contrast to responses to body displacements, responses to direct head displacements appear to depend upon a vestibulospinal trigger, since trunk and leg muscle responses to head displacements were absent in patients who had lost vestibular function as adults. Patients who lost vestibular function as infants, however, had near normal trunk and leg response to head displacements, suggesting a substitution of upper trunk and neck somatosensory inputs for missing vestibular inputs during development.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 122 (1998), S. 403-412 
    ISSN: 1432-1106
    Keywords: Key words Postural control ; Vestibular ; Hip strategy ; Joint torques ; Platform translation ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Patients with bilateral vestibular loss have difficulty maintaining balance without stepping when standing in tandem, on compliant surfaces, across narrow beams, or on one foot, especially with eyes closed. Normal individuals (with no sensory impairment) maintain balance in these tasks by employing quick, active hip rotation (a “hip strategy”). The absence of a hip strategy in vestibular patients responding to translations of a short support surface has previously been taken as evidence that the use of hip strategy requires an intact vestibular system. However, many tasks requiring hip strategy alter one or a combination of important system characteristics, such as initial state of the body (tandem stance), dynamics (compliant surfaces), or biomechanical limits of stability (narrow beams). Therefore, the balance deficit in these tasks may result from a failure to account for these support surface alterations when planning and executing sensorimotor responses. In this study, we tested the hypothesis that vestibular information is critical to trigger a hip strategy even on an unaltered support surface, which imposes no changes on the system characteristics. We recorded the postural responses of vestibular patients and control subjects with eyes closed to rearward support surface translations of varying velocity, in erect stance on a firm, flat surface. Subjects were instructed to maintain balance without stepping, if possible. Faster translation velocities (25 cm/s or more) produced a consistent pattern of early hip torque (first 400 ms) in control subjects (i.e., a hip strategy). Most of the patients with bilateral vestibular loss responded to the same translation velocities with similar torques. Contrary to our hypothesis, we conclude that vestibular function is not necessary to trigger a hip strategy. We postulate, therefore, that the balance deficit previously observed in vestibular patients during postural tasks that elicit a hip strategy may have been due to the sensorimotor consequences of the system alterations imposed by the postural tasks used in those studies. Preliminary results from two younger patients who lost vestibular function as infants indicate that age, duration of vestibular loss, and/or the timing of the loss may also be factors that can influence the use of hip strategy as a rapid postural response.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...