Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Earth and Planetary Science Letters 115 (1993), S. 13-27 
    ISSN: 0012-821X
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Geosciences , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0581
    Keywords: Structure ; morphology ; petrology ; peridotite-basalt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The St. Paul F.Z. is a large structural domain made up of multiple transform faults interrupted by several Intra-Transform Ridge (ITR) spreading segments. Two regions were studied in details by submersible: (1) The ITR short (〈20 km in length) segment near 0° 37′N–25° 27′W and 1° N–27° 42′W and (2) The St. Peter and St. Paul's Rocks (SPPR) massif located at 29° 25′W (¡3700 m depth). (1) The short ITR segments consist of a magma starved rift valley with recent volcanic activities at 4700 m depth. A geological profile made along the rift valley wall showed localized volcanics (basalts and dykes) which are believed to overlay and intrude the ultramafics. The geological setting and the high ultramafic/volcanic ratio suggest an extremely low magmatic supply and crustal-mantle uplift during lithospheric stretching and denudation. (2) The St. Peter and St. Paul's Rocks (SPPR) massif consists of a sigmoidal ridge within the active transform zone. The SPPR is divided into two different geological domains called the North and the South Ridges. The North Ridge consists of strongly tectonized fault scarps composed of banded and mylonitized peridotite, sporadic gabbros (3900–2500 m) and metabasalts (2700–1700 m). The South Ridge is less tectonized with undeformed, serpentinized spinel lherzolite (2000–1400 m) and basalts. Extensional motion and denudation accompanied by diapirism affected the South Ridge within a transform domain. Instead, the North Ridge was formed during an important strike-slip and faulting motion resulting in the uplifted portion of the St. Paul F.Z. transverse ridge. There is a regional compositional variation of the volcanics where E-MORBs and alkali basalts are produced on the SPPR massif and are comparable to the adjacent northern segments of the Mid-Atlantic Ridge. On the other hand, N and T- MORBs collected from the eastern part of the St. Paul F.Z. (25° 27′ W IRT) are similar to the volcanics from the southern segments of the MAR. The peridotites exposed in these provinces (SPPR and ITR) are similar in their REE and trace element distribution. Different degrees (3–15%) of partial melting of a mixed composite mantle consisting of spinel and amphibole bearing lherzolite veined with 5–40% clinopyroxenite gave rise to the observed MORBs and alkali basalts.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Marine geophysical researches 9 (1988), S. 147-163 
    ISSN: 1573-0581
    Keywords: Gulf of Tadjoura ; submersible ; oceanic rift ; tectonics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract The results of 26 dives with the diving saucer Cyana in the Gulf of Tadjoura and Ghoubbet al Kharab (Republic of Djibouti) are presented. One can demonstrate that the sites of recent volcanism, tectonics and hydrothermal activity within the axial part of the Gulf of Tadjoura coincide with topographic highs trending at a high angle (azimuth 135°) with respect to the average trend of the axial trough of the Gulf (azimuth 080°). The highs owe their relief to both volcanism and normal faulting along a trend of 130–140°. Recent faulting on the bounding walls of the axial trough is also found along a trend of 130–140° where the faults interfere with another set of apparently older faults trending 070° parallel to the axial trough. Spacing between the active zones of the Gulf is regular and about 30 km. No evidence for transform faulting has been found, in contradiction to all previous kinematic models of the Gulf of Tadjoura. There is evidence that the presently active phase of opening associated with 130–140° faults is less than 0.7 my old and that there was an older phase associated with 070°–080° faults creating the main trough of the Gulf. The basaltic lavas created during the two phases have evolved from transitional to tholeiitic.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The seismicity recorded locally since 1972 in the Republic of Djibuti shows a marked contrast between a concentrated zone of earthquakes in the Gulf of Tadjoura and Ghoubbet al Kharab and a diffuse zone of seismicity west of the Ardoukoba Rift6'11 (Fig. la). In November and December 1978, a seismic ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...